
Pykka
Release 4.0.2

Stein Magnus Jodal and contributors

Feb 18, 2024

USAGE

1 Inspiration 3

2 Project resources 5
2.1 Quickstart . 5
2.2 Examples . 10
2.3 Runtimes . 15
2.4 Testing . 16
2.5 Module . 18
2.6 Actors . 18
2.7 Proxies . 22
2.8 Futures . 25
2.9 Registry . 29
2.10 Exceptions . 30
2.11 Messages . 30
2.12 Logging . 31
2.13 Debug helpers . 32
2.14 Type hints . 36

3 License 39

Python Module Index 41

Index 43

i

ii

Pykka, Release 4.0.2

Pykka is a Python implementation of the actor model. The actor model introduces some simple rules to control the
sharing of state and cooperation between execution units, which makes it easier to build concurrent applications.

For details and code examples, see the Pykka documentation.

Pykka is available from PyPI. To install it, run:

pip install pykka

Pykka works with Python 3.8 or newer.

USAGE 1

https://en.wikipedia.org/wiki/Actor_model
https://pykka.readthedocs.io/

Pykka, Release 4.0.2

2 USAGE

CHAPTER

ONE

INSPIRATION

Much of the naming of concepts and methods in Pykka is taken from the Akka project which implements actors on the
JVM. Though, Pykka does not aim to be a Python port of Akka, and supports far fewer features.

Notably, Pykka does not support the following features:

• Supervision: Linking actors, supervisors, or supervisor groups.

• Remoting: Communicating with actors running on other hosts.

• Routers: Pykka does not come with a set of predefined message routers, though you may make your own actors
for routing messages.

3

https://akka.io/

Pykka, Release 4.0.2

4 Chapter 1. Inspiration

CHAPTER

TWO

PROJECT RESOURCES

• Documentation

• Source code

• Releases

• Issue tracker

• Contributors

• Users

2.1 Quickstart

Pykka is a Python implementation of the actor model. The actor model introduces some simple rules to control the
sharing of state and cooperation between execution units, which makes it easier to build concurrent applications.

2.1.1 Rules of the actor model

• An actor is an execution unit that executes concurrently with other actors.

• An actor does not share state with anybody else, but it can have its own state.

• An actor can only communicate with other actors by sending and receiving messages. It can only send messages
to actors whose address it has.

• When an actor receives a message it may take actions like:

– altering its own state, e.g. so that it can react differently to a future message,

– sending messages to other actors, or

– starting new actors.

None of the actions are required, and they may be applied in any order.

• An actor only processes one message at a time. In other words, a single actor does not give you any concurrency,
and it does not need to use locks internally to protect its own state.

5

https://pykka.readthedocs.io/
https://github.com/jodal/pykka
https://github.com/jodal/pykka/releases
https://github.com/jodal/pykka/issues
https://github.com/jodal/pykka/graphs/contributors
https://github.com/jodal/pykka/wiki/Users
https://en.wikipedia.org/wiki/Actor_model

Pykka, Release 4.0.2

2.1.2 The actor implementations

Pykka’s actor API comes with the following implementations:

• Threads: Each ThreadingActor is executed by a regular thread, i.e. threading.Thread. As handles for
future results, it uses ThreadingFuturewhich is a thin wrapper around a queue.Queue. It has no dependencies
outside Python itself. ThreadingActor plays well together with non-actor threads.

Pykka 2 and earlier shipped with some alternative implementations that were removed in Pykka 3:

• gevent: Each actor was executed by a gevent greenlet.

• Eventlet: Each actor was executed by an Eventlet greenlet.

2.1.3 A basic actor

In its most basic form, a Pykka actor is a class with an on_receive() method:

import pykka

class Greeter(pykka.ThreadingActor):
def on_receive(self, message):

print('Hi there!')

To start an actor, you call the class’ method start(), which starts the actor and returns an actor reference which can
be used to communicate with the running actor:

actor_ref = Greeter.start()

If you need to pass arguments to the actor upon creation, you can pass them to the start() method, and receive them
using the regular __init__() method:

import pykka

class Greeter(pykka.ThreadingActor):
def __init__(self, greeting='Hi there!'):

super().__init__()
self.greeting = greeting

def on_receive(self, message):
print(self.greeting)

actor_ref = Greeter.start(greeting='Hi you!')

It can be useful to know that the init method is run in the execution context that starts the actor. There are also hooks
for running code in the actor’s own execution context when the actor starts, when it stops, and when an unhandled
exception is raised. Check out the full API docs for the details.

To stop an actor, you can either call stop() on the ActorRef :

actor_ref.stop()

Or, if an actor wants to stop itself, it can simply do so:

self.stop()

Once an actor has been stopped, it cannot be restarted.

6 Chapter 2. Project resources

https://docs.python.org/3/library/threading.html#threading.Thread
https://docs.python.org/3/library/queue.html#queue.Queue
http://www.gevent.org/
https://eventlet.net/

Pykka, Release 4.0.2

Sending messages

To send a message to the actor, you can either use the tell() method or the ask() method on the actor_ref object.
tell()will fire off a message without waiting for an answer. In other words, it will never block. ask()will by default
block until an answer is returned, potentially forever. If you provide a timeout keyword argument to ask(), you can
specify for how long it should wait for an answer. If you want an answer, but don’t need it right away because you have
other stuff you can do first, you can pass block=False, and ask() will immediately return a “future” object.

The message itself can be of any type, for example a dict or your own message class type.

Summarized in code:

actor_ref.tell('Hi!')
=> Returns nothing. Will never block.

answer = actor_ref.ask('Hi?')
=> May block forever waiting for an answer

answer = actor_ref.ask('Hi?', timeout=3)
=> May wait 3s for an answer, then raises exception if no answer.

future = actor_ref.ask('Hi?', block=False)
=> Will return a future object immediately.
answer = future.get()
=> May block forever waiting for an answer
answer = future.get(timeout=0.1)
=> May wait 0.1s for an answer, then raises exception if no answer.

Warning: For performance reasons, Pykka does not clone the message you send before delivering it to the receiver.
You are yourself responsible for either using immutable data structures or to copy.deepcopy() the data you’re
sending off to other actors.

Replying to messages

If a message is sent using actor_ref.ask() you can reply to the sender of the message by simply returning a value
from the on_receive() method:

import pykka

class Greeter(pykka.ThreadingActor):
def on_receive(self, message):

return 'Hi there!'

actor_ref = Greeter.start()

answer = actor_ref.ask('Hi?')
print(answer)
=> 'Hi there!'

None is a valid response so if you return None explicitly, or don’t return at all, a response containing None will be
returned to the sender.

2.1. Quickstart 7

https://docs.python.org/3/library/copy.html#copy.deepcopy

Pykka, Release 4.0.2

From the point of view of the actor it doesn’t matter whether the message was sent using tell() or ask(). When the
sender doesn’t expect a response the on_receive() return value will be ignored.

The situation is similar in regard to exceptions: when ask() is used and you raise an exception from within
on_receive() method, the exception will propagate to the sender:

import pykka

class Raiser(pykka.ThreadingActor):
def on_receive(self, message):

raise Exception('Oops')

actor_ref = Raiser.start()

try:
actor_ref.ask('How are you?')

except Exception as e:
print(repr(e))
=> Exception('Oops')

2.1.4 Actor proxies

With the basic building blocks provided by actors and futures, we got everything we need to build more advanced
abstractions. Pykka provides a single abstraction on top of the basic actor model, named “actor proxies”. You can use
Pykka without proxies, but we’ve found it to be a very convenient abstraction when building Mopidy.

Let’s create an actor and start it:

import pykka

class Calculator(pykka.ThreadingActor):
def __init__(self):

super().__init__()
self.last_result = None

def add(self, a, b=None):
if b is not None:

self.last_result = a + b
else:

self.last_result += a
return self.last_result

def sub(self, a, b=None):
if b is not None:

self.last_result = a - b
else:

self.last_result -= a
return self.last_result

actor_ref = Calculator.start()

You can create a proxy from any reference to a running actor:

8 Chapter 2. Project resources

https://www.mopidy.com/

Pykka, Release 4.0.2

proxy = actor_ref.proxy()

The proxy object will use introspection to figure out what public attributes and methods the actor has, and then mirror
the full API of the actor. Any attribute or method prefixed with underscore will be ignored, which is the convention for
keeping stuff private in Python.

When we access attributes or call methods on the proxy, it will ask the actor to access the given attribute or call the
given method, and return the result to us. All results are wrapped in “future” objects, so you must use the get()method
to get the actual data:

future = proxy.add(1, 3)
future.get()
=> 4

proxy.last_result.get()
=> 4

Since an actor only processes one message at the time and all messages are kept in order, you don’t need to add the call
to get() just to block processing until the actor has completed processing your last message:

proxy.sub(5)
proxy.add(3)
proxy.last_result.get()
=> 2

Since assignment doesn’t return anything, it works just like on regular objects:

proxy.last_result = 17
proxy.last_result.get()
=> 17

Under the hood, the proxy does everything by sending messages to the actor using the regular ask()method we talked
about previously. By doing so, it maintains the actor model restrictions. The only “magic” happening here is some
basic introspection and automatic building of three different message types; one for method calls, one for attribute
reads, and one for attribute writes.

Traversable attributes on proxies

Sometimes you’ll want to access an actor attribute’s methods or attributes through a proxy. For this case, Pykka supports
“traversable attributes”. By marking an actor attribute as traversable, Pykka will not return the attribute when accessed,
but wrap it in a new proxy which is returned instead.

To mark an attribute as traversable, simply mark it with the traversable() function:

import pykka

class AnActor(pykka.ThreadingActor):
playback = pykka.traversable(Playback())

class Playback(object):
def play(self):

return True

(continues on next page)

2.1. Quickstart 9

Pykka, Release 4.0.2

(continued from previous page)

proxy = AnActor.start().proxy()
play_success = proxy.playback.play().get()

You can access methods and attributes nested as deep as you like, as long as all attributes on the path between the actor
and the method or attribute on the end are marked as traversable.

2.2 Examples

The examples/ dir in Pykka’s Git repo includes some runnable examples of Pykka usage.

2.2.1 Plain actor

#!/usr/bin/env python3

import pykka

GetMessages = object()

class PlainActor(pykka.ThreadingActor):
def __init__(self):

super().__init__()
self.stored_messages = []

def on_receive(self, message):
if message is GetMessages:

return self.stored_messages
self.stored_messages.append(message)
return None

if __name__ == "__main__":
actor = PlainActor.start()
actor.tell({"no": "Norway", "se": "Sweden"})
actor.tell({"a": 3, "b": 4, "c": 5})
print(actor.ask(GetMessages))
actor.stop()

Output:

[{'no': 'Norway', 'se': 'Sweden'}, {'a': 3, 'b': 4, 'c': 5}]

10 Chapter 2. Project resources

https://github.com/jodal/pykka/

Pykka, Release 4.0.2

2.2.2 Actor with proxy

#!/usr/bin/env python3

import threading
import time

import pykka

class AnActor(pykka.ThreadingActor):
field = "this is the value of AnActor.field"

def proc(self):
log("this was printed by AnActor.proc()")

def func(self):
time.sleep(0.5) # Block a bit to make it realistic
return "this was returned by AnActor.func() after a delay"

def log(msg):
thread_name = threading.current_thread().name
print(f"{thread_name}: {msg}")

if __name__ == "__main__":
actor = AnActor.start().proxy()
for _ in range(3):

Method with side effect
log("calling AnActor.proc() ...")
actor.proc()

Method with return value
log("calling AnActor.func() ...")
result = actor.func() # Does not block, returns a future
log("printing result ... (blocking)")
log(result.get()) # Blocks until ready

Field reading
log("reading AnActor.field ...")
result = actor.field # Does not block, returns a future
log("printing result ... (blocking)")
log(result.get()) # Blocks until ready

Field writing
log("writing AnActor.field ...")
actor.field = "new value" # Assignment does not block
result = actor.field # Does not block, returns a future
log("printing new field value ... (blocking)")
log(result.get()) # Blocks until ready

actor.stop()

Output:

2.2. Examples 11

Pykka, Release 4.0.2

MainThread: calling AnActor.proc() ...
MainThread: calling AnActor.func() ...
MainThread: printing result ... (blocking)
AnActor-1: this was printed by AnActor.proc()
MainThread: this was returned by AnActor.func() after a delay
MainThread: reading AnActor.field ...
MainThread: printing result ... (blocking)
MainThread: this is the value of AnActor.field
MainThread: writing AnActor.field ...
MainThread: printing new field value ... (blocking)
MainThread: new value
MainThread: calling AnActor.proc() ...
MainThread: calling AnActor.func() ...
MainThread: printing result ... (blocking)
AnActor-1: this was printed by AnActor.proc()
MainThread: this was returned by AnActor.func() after a delay
MainThread: reading AnActor.field ...
MainThread: printing result ... (blocking)
MainThread: new value
MainThread: writing AnActor.field ...
MainThread: printing new field value ... (blocking)
MainThread: new value
MainThread: calling AnActor.proc() ...
MainThread: calling AnActor.func() ...
AnActor-1: this was printed by AnActor.proc()
MainThread: printing result ... (blocking)
MainThread: this was returned by AnActor.func() after a delay
MainThread: reading AnActor.field ...
MainThread: printing result ... (blocking)
MainThread: new value
MainThread: writing AnActor.field ...
MainThread: printing new field value ... (blocking)
MainThread: new value

2.2.3 Multiple cooperating actors

#!/usr/bin/env python3

import pykka

class Adder(pykka.ThreadingActor):
def add_one(self, i):

print(f"{self} is increasing {i}")
return i + 1

class Bookkeeper(pykka.ThreadingActor):
def __init__(self, adder):

super().__init__()
self.adder = adder

(continues on next page)

12 Chapter 2. Project resources

Pykka, Release 4.0.2

(continued from previous page)

def count_to(self, target):
i = 0
while i < target:

i = self.adder.add_one(i).get()
print(f"{self} got {i} back")

if __name__ == "__main__":
adder = Adder.start().proxy()
bookkeeper = Bookkeeper.start(adder).proxy()
bookkeeper.count_to(10).get()
pykka.ActorRegistry.stop_all()

Output:

Adder (urn:uuid:f50029eb-7cea-4ab9-98bf-a5bf65af8b8f) is increasing 0
Bookkeeper (urn:uuid:4f2d4e78-7a33-4c4f-86ac-7c415a7205f4) got 1 back
Adder (urn:uuid:f50029eb-7cea-4ab9-98bf-a5bf65af8b8f) is increasing 1
Bookkeeper (urn:uuid:4f2d4e78-7a33-4c4f-86ac-7c415a7205f4) got 2 back
Adder (urn:uuid:f50029eb-7cea-4ab9-98bf-a5bf65af8b8f) is increasing 2
Bookkeeper (urn:uuid:4f2d4e78-7a33-4c4f-86ac-7c415a7205f4) got 3 back
Adder (urn:uuid:f50029eb-7cea-4ab9-98bf-a5bf65af8b8f) is increasing 3
Bookkeeper (urn:uuid:4f2d4e78-7a33-4c4f-86ac-7c415a7205f4) got 4 back
Adder (urn:uuid:f50029eb-7cea-4ab9-98bf-a5bf65af8b8f) is increasing 4
Bookkeeper (urn:uuid:4f2d4e78-7a33-4c4f-86ac-7c415a7205f4) got 5 back
Adder (urn:uuid:f50029eb-7cea-4ab9-98bf-a5bf65af8b8f) is increasing 5
Bookkeeper (urn:uuid:4f2d4e78-7a33-4c4f-86ac-7c415a7205f4) got 6 back
Adder (urn:uuid:f50029eb-7cea-4ab9-98bf-a5bf65af8b8f) is increasing 6
Bookkeeper (urn:uuid:4f2d4e78-7a33-4c4f-86ac-7c415a7205f4) got 7 back
Adder (urn:uuid:f50029eb-7cea-4ab9-98bf-a5bf65af8b8f) is increasing 7
Bookkeeper (urn:uuid:4f2d4e78-7a33-4c4f-86ac-7c415a7205f4) got 8 back
Adder (urn:uuid:f50029eb-7cea-4ab9-98bf-a5bf65af8b8f) is increasing 8
Bookkeeper (urn:uuid:4f2d4e78-7a33-4c4f-86ac-7c415a7205f4) got 9 back
Adder (urn:uuid:f50029eb-7cea-4ab9-98bf-a5bf65af8b8f) is increasing 9
Bookkeeper (urn:uuid:4f2d4e78-7a33-4c4f-86ac-7c415a7205f4) got 10 back

2.2.4 Pool of actors sharing work

#!/usr/bin/env python3

"""Resolve a bunch of IP addresses using a pool of resolver actors.

Based on example contributed by Kristian Klette <klette@klette.us>.

Either run without arguments:

./resolver.py

Or specify pool size and IPs to resolve:

(continues on next page)

2.2. Examples 13

Pykka, Release 4.0.2

(continued from previous page)

./resolver.py 3 193.35.52.{1,2,3,4,5,6,7,8,9}
"""

import pprint
import socket
import sys

import pykka

class Resolver(pykka.ThreadingActor):
def resolve(self, ip):

try:
info = socket.gethostbyaddr(ip)
print(f"Finished resolving {ip}")
return info[0]

except Exception:
print(f"Failed resolving {ip}")
return None

def run(pool_size, *ips):
Start resolvers
resolvers = [Resolver.start().proxy() for _ in range(pool_size)]

Distribute work by mapping IPs to resolvers (not blocking)
hosts = []
for i, ip in enumerate(ips):

hosts.append(resolvers[i % len(resolvers)].resolve(ip))

Gather results (blocking)
ip_to_host = zip(ips, pykka.get_all(hosts))
pprint.pprint(list(ip_to_host))

Clean up
pykka.ActorRegistry.stop_all()

if __name__ == "__main__":
if len(sys.argv[1:]) >= 2:

run(int(sys.argv[1]), *sys.argv[2:])
else:

ips = [f"193.35.52.{i}" for i in range(1, 50)]
run(10, *ips)

14 Chapter 2. Project resources

Pykka, Release 4.0.2

2.2.5 Mopidy music server

Pykka was originally created back in 2011 as a formalization of concurrency patterns that emerged in the Mopidy music
server. The original Pykka source code wasn’t extracted from Mopidy, but it built and improved on the concepts from
Mopidy. Mopidy was later ported to build on Pykka instead of its own concurrency abstractions.

Mopidy still use Pykka extensively to keep independent parts, like the MPD and HTTP frontend servers or the Spotify
and Google Music integrations, running independently. Every one of Mopidy’s more than 100 extensions has at least
one Pykka actor. By running each extension as an independent actor, errors and bugs in one extension is attempted
isolated, to reduce the effect on the rest of the system.

You can browse the Mopidy source code to find many real life examples of Pykka usage.

2.3 Runtimes

By default, Pykka builds on top of Python’s regular threading concurrency model, via the standard library modules
threading and queue.

Pykka 2 and earlier shipped with some alternative implementations that ran on top of gevent or eventlet. These
alternative implementations were removed in Pykka 3.

Note that Pykka does no attempt at supporting a mix of concurrency runtimes. Such a future feature has briefly been
discussed in issue #11.

2.3.1 Threading

Installation

The default threading runtime has no dependencies other than Pykka itself and the Python standard library.

API

class pykka.ThreadingFuture

Implementation of Future for use with regular Python threads`.

The future is implemented using a queue.Queue.

The future does not make a copy of the object which is set() on it. It is the setters responsibility to only pass
immutable objects or make a copy of the object before setting it on the future.

Changed in version 0.14: Previously, the encapsulated value was a copy made with copy.deepcopy(), unless
the encapsulated value was a future, in which case the original future was encapsulated.

get(*, timeout: float | None = None)→ Any
Get the value encapsulated by the future.

If the encapsulated value is an exception, it is raised instead of returned.

If timeout is None, as default, the method will block until it gets a reply, potentially forever. If timeout is
an integer or float, the method will wait for a reply for timeout seconds, and then raise pykka.Timeout.

The encapsulated value can be retrieved multiple times. The future will only block the first time the value
is accessed.

Parameters
timeout (float or None) – seconds to wait before timeout

2.3. Runtimes 15

https://www.mopidy.com/
https://www.mopidy.com/
https://github.com/mopidy/mopidy
https://docs.python.org/3/library/threading.html#module-threading
https://docs.python.org/3/library/queue.html#module-queue
https://github.com/jodal/pykka/issues/11
https://docs.python.org/3/library/queue.html#queue.Queue
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Any

Pykka, Release 4.0.2

Raise
pykka.Timeout if timeout is reached

Raise
encapsulated value if it is an exception

Returns
encapsulated value if it is not an exception

set(value: Any | None = None)→ None
Set the encapsulated value.

Parameters
value (any object or None) – the encapsulated value or nothing

Raise
an exception if set is called multiple times

set_exception(exc_info: OptExcInfo | None = None)→ None
Set an exception as the encapsulated value.

You can pass an exc_info three-tuple, as returned by sys.exc_info(). If you don’t pass exc_info,
sys.exc_info() will be called and the value returned by it used.

In other words, if you’re calling set_exception(), without any arguments, from an except block, the
exception you’re currently handling will automatically be set on the future.

Parameters
exc_info (three-tuple of (exc_class, exc_instance, traceback)) – the en-
capsulated exception

class pykka.ThreadingActor(*_args: Any, **_kwargs: Any)
Implementation of Actor using regular Python threads.

use_daemon_thread: ClassVar[bool] = False

A boolean value indicating whether this actor is executed on a thread that is a daemon thread (True) or not
(False). This must be set before pykka.Actor.start() is called, otherwise RuntimeError is raised.

The entire Python program exits when no alive non-daemon threads are left. This means that an actor
running on a daemon thread may be interrupted at any time, and there is no guarantee that cleanup will be
done or that pykka.Actor.on_stop() will be called.

Actors do not inherit the daemon flag from the actor that made it. It always has to be set explicitly for the
actor to run on a daemonic thread.

2.4 Testing

Pykka actors can be tested using the regular Python testing tools like pytest, unittest, and unittest.mock.

To test actors in a setting as close to production as possible, a typical pattern is the following:

1. In the test setup, start an actor together with any actors/collaborators it depends on. The dependencies will often
be replaced by mocks to control their behavior.

2. In the test, ask() or tell() the actor something.

3. In the test, assert on the actor’s state or the return value from the ask().

4. In the test teardown, stop the actor to properly clean up before the next test.

16 Chapter 2. Project resources

https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/sys.html#sys.exc_info
https://docs.python.org/3/library/sys.html#sys.exc_info
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.pytest.org/
https://docs.python.org/3/library/unittest.html#module-unittest
https://docs.python.org/3/library/unittest.mock.html#module-unittest.mock

Pykka, Release 4.0.2

2.4.1 An example

Let’s look at an example actor that we want to test:

import pykka

class ProducerActor(pykka.ThreadingActor):
def __init__(self, consumer):

super().__init__()
self.consumer = consumer

def produce(self):
new_item = {"item": 1, "new": True}
self.consumer.consume(new_item)

We can test this actor with pytest by mocking the consumer and asserting that it receives a newly produced item:

import pytest
from producer import ProducerActor

@pytest.fixture()
def consumer_mock(mocker):

return mocker.Mock()

@pytest.fixture()
def producer(consumer_mock):

Step 1: The actor under test is wired up with
its dependencies and is started.
proxy = ProducerActor.start(consumer_mock).proxy()

yield proxy

Step 4: The actor is stopped to clean up before the next test.
proxy.stop()

def test_producer_actor(consumer_mock, producer):
Step 2: Interact with the actor.
We call .get() on the last future returned by the actor to wait
for the actor to process all messages before asserting anything.
producer.produce().get()

Step 3: Assert that the return values or actor state is as expected.
consumer_mock.consume.assert_called_once_with({"item": 1, "new": True})

If this way of setting up and tearing down test resources is unfamiliar to you, it is strongly recommended to read up on
pytest’s great fixture feature.

2.4. Testing 17

https://docs.pytest.org/
https://docs.pytest.org/en/latest/fixture.html

Pykka, Release 4.0.2

2.5 Module

pykka.__version__

Pykka’s PEP 386 and PEP 396 compatible version number

2.6 Actors

class pykka.Actor(*_args: Any, **_kwargs: Any)
An actor is an execution unit that executes concurrently with other actors.

To create an actor:

1. subclass one of the Actor implementations:

• ThreadingActor

2. implement your methods, including __init__(), as usual,

3. call Actor.start() on your actor class, passing the method any arguments for your constructor.

To stop an actor, call Actor.stop() or ActorRef.stop().

For example:

import pykka

class MyActor(pykka.ThreadingActor):
def __init__(self, my_arg=None):

super().__init__()
... # My optional init code with access to start() arguments

def on_start(self):
... # My optional setup code in same context as on_receive()

def on_stop(self):
... # My optional cleanup code in same context as on_receive()

def on_failure(self, exception_type, exception_value, traceback):
... # My optional cleanup code in same context as on_receive()

def on_receive(self, message):
... # My optional message handling code for a plain actor

def a_method(self, ...):
... # My regular method to be used through an ActorProxy

my_actor_ref = MyActor.start(my_arg=...)
my_actor_ref.stop()

classmethod start(*args: Any, **kwargs: Any)→ ActorRef [A]
Start an actor.

Starting an actor also registers it in the ActorRegistry.

Any arguments passed to start() will be passed on to the class constructor.

18 Chapter 2. Project resources

https://peps.python.org/pep-0386/
https://peps.python.org/pep-0396/
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any

Pykka, Release 4.0.2

Behind the scenes, the following is happening when you call start():

1. The actor is created:

1. actor_urn is initialized with the assigned URN.

2. actor_inbox is initialized with a new actor inbox.

3. actor_ref is initialized with a pykka.ActorRef object for safely communicating with the actor.

4. At this point, your __init__() code can run.

2. The actor is registered in pykka.ActorRegistry.

3. The actor receive loop is started by the actor’s associated thread/greenlet.

Returns
a ActorRef which can be used to access the actor in a safe manner

property actor_ref: ActorRef[A]

The actor’s ActorRef instance.

actor_urn: str

The actor URN string is a universally unique identifier for the actor. It may be used for looking up a specific
actor using ActorRegistry.get_by_urn().

actor_inbox: ActorInbox

The actor’s inbox. Use ActorRef.tell(), ActorRef.ask(), and friends to put messages in the inbox.

actor_stopped: Event

A threading.Event representing whether or not the actor should continue processing messages. Use
stop() to change it.

stop()→ None
Stop the actor.

It’s equivalent to calling ActorRef.stop() with block=False.

on_start()→ None
Run code at the beginning of the actor’s life.

Hook for doing any setup that should be done after the actor is started, but before it starts processing
messages.

For ThreadingActor, this method is executed in the actor’s own thread, while __init__() is executed
in the thread that created the actor.

If an exception is raised by this method the stack trace will be logged, and the actor will stop.

on_stop()→ None
Run code at the end of the actor’s life.

Hook for doing any cleanup that should be done after the actor has processed the last message, and before
the actor stops.

This hook is not called when the actor stops because of an unhandled exception. In that case, the
on_failure() hook is called instead.

For ThreadingActor this method is executed in the actor’s own thread, immediately before the thread
exits.

If an exception is raised by this method the stack trace will be logged, and the actor will stop.

2.6. Actors 19

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/threading.html#threading.Event
https://docs.python.org/3/library/threading.html#threading.Event
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Pykka, Release 4.0.2

on_failure(exception_type: type[BaseException] | None, exception_value: BaseException | None,
traceback: TracebackType | None)→ None

Run code when an unhandled exception is raised.

Hook for doing any cleanup after an unhandled exception is raised, and before the actor stops.

For ThreadingActor this method is executed in the actor’s own thread, immediately before the thread
exits.

The method’s arguments are the relevant information from sys.exc_info().

If an exception is raised by this method the stack trace will be logged, and the actor will stop.

on_receive(message: Any)→ Any
May be implemented for the actor to handle regular non-proxy messages.

Parameters
message (any) – the message to handle

Returns
anything that should be sent as a reply to the sender

class pykka.ActorRef(actor: A)
Reference to a running actor which may safely be passed around.

ActorRef instances are returned by Actor.start() and the lookup methods in ActorRegistry. You should
never need to create ActorRef instances yourself.

Parameters
actor (Actor) – the actor to wrap

actor_class: type[A]

The class of the referenced actor.

actor_urn: str

See Actor.actor_urn.

actor_inbox: ActorInbox

See Actor.actor_inbox.

actor_stopped: Event

See Actor.actor_stopped .

is_alive()→ bool
Check if actor is alive.

This is based on the actor’s stopped flag. The actor is not guaranteed to be alive and responding even though
is_alive() returns True.

Returns
Returns True if actor is alive, False otherwise.

tell(message: Any)→ None
Send message to actor without waiting for any response.

Will generally not block, but if the underlying queue is full it will block until a free slot is available.

Parameters
message (any) – message to send

Raise
pykka.ActorDeadError if actor is not available

20 Chapter 2. Project resources

https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/exceptions.html#BaseException
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#BaseException
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/sys.html#sys.exc_info
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None

Pykka, Release 4.0.2

Returns
nothing

ask(message: Any, *, block: Literal[False], timeout: float | None = None)→ Future[Any]
ask(message: Any, *, block: Literal[True], timeout: float | None = None)→ Any
ask(message: Any, *, block: bool = True, timeout: float | None = None)→ Any | Future[Any]

Send message to actor and wait for the reply.

The message can be of any type. If block is False, it will immediately return a Future instead of blocking.

If block is True, and timeout is None, as default, the method will block until it gets a reply, potentially
forever. If timeout is an integer or float, the method will wait for a reply for timeout seconds, and then
raise pykka.Timeout.

Parameters

• message (any) – message to send

• block (boolean) – whether to block while waiting for a reply

• timeout (float or None) – seconds to wait before timeout if blocking

Raise
pykka.Timeout if timeout is reached if blocking

Raise
any exception returned by the receiving actor if blocking

Returns
pykka.Future, or response if blocking

stop(*, block: Literal[True], timeout: float | None = None)→ bool
stop(*, block: Literal[False], timeout: float | None = None)→ Future[bool]
stop(*, block: bool = True, timeout: float | None = None)→ Any | Future[Any]

Send a message to the actor, asking it to stop.

Returns True if actor is stopped or was being stopped at the time of the call. False if actor was already
dead. If block is False, it returns a future wrapping the result.

Messages sent to the actor before the actor is asked to stop will be processed normally before it stops.

Messages sent to the actor after the actor is asked to stop will be replied to with pykka.ActorDeadError
after it stops.

The actor may not be restarted.

block and timeout works as for ask().

Returns
pykka.Future, or a boolean result if blocking

proxy()→ ActorProxy[A]
Wrap the ActorRef in an ActorProxy.

Using this method like this:

proxy = AnActor.start().proxy()

is analogous to:

proxy = ActorProxy(AnActor.start())

2.6. Actors 21

https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None

Pykka, Release 4.0.2

Raise
pykka.ActorDeadError if actor is not available

Returns
pykka.ActorProxy

2.7 Proxies

class pykka.ActorProxy(*, actor_ref: ActorRef[A], attr_path: AttrPath | None = None)
An ActorProxy wraps an ActorRef instance.

The proxy allows the referenced actor to be used through regular method calls and field access.

You can create an ActorProxy from any ActorRef :

actor_ref = MyActor.start()
actor_proxy = ActorProxy(actor_ref)

You can also get an ActorProxy by using proxy():

actor_proxy = MyActor.start().proxy()

Attributes and method calls

When reading an attribute or getting a return value from a method, you get a Future object back. To get the
enclosed value from the future, you must call get() on the returned future:

print(actor_proxy.string_attribute.get())
print(actor_proxy.count().get() + 1)

If you call a method just for it’s side effects and do not care about the return value, you do not need to accept the
returned future or call get() on the future. Simply call the method, and it will be executed concurrently with
your own code:

actor_proxy.method_with_side_effect()

If you want to block your own code from continuing while the other method is processing, you can use get() to
block until it completes:

actor_proxy.method_with_side_effect().get()

You can also use the await keyword to block until the method completes:

await actor_proxy.method_with_side_effect()

If you access a proxied method as an attribute, without calling it, you get an CallableProxy.

Proxy to itself

An actor can use a proxy to itself to schedule work for itself. The scheduled work will only be done after the
current message and all messages already in the inbox are processed.

For example, if an actor can split a time consuming task into multiple parts, and after completing each part can
ask itself to start on the next part using proxied calls or messages to itself, it can react faster to other incoming
messages as they will be interleaved with the parts of the time consuming task. This is especially useful for being
able to stop the actor in the middle of a time consuming task.

22 Chapter 2. Project resources

https://docs.python.org/3/library/constants.html#None

Pykka, Release 4.0.2

To create a proxy to yourself, use the actor’s actor_ref attribute:

proxy_to_myself_in_the_future = self.actor_ref.proxy()

If you create a proxy in your actor’s constructor or on_start method, you can create a nice API for deferring
work to yourself in the future:

def __init__(self):
...
self._in_future = self.actor_ref.proxy()
...

def do_work(self):
...
self._in_future.do_more_work()
...

def do_more_work(self):
...

To avoid infinite loops during proxy introspection, proxies to self should be kept as private instance attributes by
prefixing the attribute name with _.

Examples

An example of ActorProxy usage:

#!/usr/bin/env python3

import pykka

class Adder(pykka.ThreadingActor):
def add_one(self, i):

print(f"{self} is increasing {i}")
return i + 1

class Bookkeeper(pykka.ThreadingActor):
def __init__(self, adder):

super().__init__()
self.adder = adder

def count_to(self, target):
i = 0
while i < target:

i = self.adder.add_one(i).get()
print(f"{self} got {i} back")

if __name__ == "__main__":
adder = Adder.start().proxy()
bookkeeper = Bookkeeper.start(adder).proxy()
bookkeeper.count_to(10).get()
pykka.ActorRegistry.stop_all()

2.7. Proxies 23

Pykka, Release 4.0.2

Parameters
actor_ref (pykka.ActorRef) – reference to the actor to proxy

Raise
pykka.ActorDeadError if actor is not available

actor_ref: ActorRef[A]

The actor’s pykka.ActorRef instance.

class pykka.CallableProxy(*, actor_ref: ActorRef[A], attr_path: AttrPath)
Proxy to a single method.

CallableProxy instances are returned when accessing methods on a ActorProxy without calling them.

Example:

proxy = AnActor.start().proxy()

Ask semantics returns a future. See `__call__()` docs.
future = proxy.do_work()

Tell semantics are fire and forget. See `defer()` docs.
proxy.do_work.defer()

__call__(*args: Any, **kwargs: Any)→ Future[Any]
Call with ask() semantics.

Returns a future which will yield the called method’s return value.

If the call raises an exception is set on the future, and will be reraised by get(). If the future is left unused,
the exception will not be reraised. Either way, the exception will also be logged. See Logging for details.

defer(*args: Any, **kwargs: Any)→ None
Call with tell() semantics.

Does not create or return a future.

If the call raises an exception, there is no future to set the exception on. Thus, the actor’s on_failure()
hook is called instead.

New in version 2.0.

pykka.traversable(obj: T)→ T
Mark an actor attribute as traversable.

The traversable marker makes the actor attribute’s own methods and attributes available to users of the actor
through an ActorProxy.

Used as a function to mark a single attribute:

class AnActor(pykka.ThreadingActor):
playback = pykka.traversable(Playback())

class Playback(object):
def play(self):

return True

This function can also be used as a class decorator, making all instances of the class traversable:

24 Chapter 2. Project resources

https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None

Pykka, Release 4.0.2

class AnActor(pykka.ThreadingActor):
playback = Playback()

@pykka.traversable
class Playback(object):

def play(self):
return True

The third alternative, and the only way in Pykka < 2.0, is to manually mark a class as traversable by setting the
pykka_traversable attribute to True:

class AnActor(pykka.ThreadingActor):
playback = Playback()

class Playback(object):
pykka_traversable = True

def play(self):
return True

When the attribute is marked as traversable, its methods can be executed in the context of the actor through an
actor proxy:

proxy = AnActor.start().proxy()
assert proxy.playback.play().get() is True

New in version 2.0.

2.8 Futures

class pykka.Future

A handle to a value which is available now or in the future.

Typically returned by calls to actor methods or accesses to actor fields.

To get hold of the encapsulated value, call Future.get() or await the future.

get(*, timeout: float | None = None)→ T
Get the value encapsulated by the future.

If the encapsulated value is an exception, it is raised instead of returned.

If timeout is None, as default, the method will block until it gets a reply, potentially forever. If timeout is
an integer or float, the method will wait for a reply for timeout seconds, and then raise pykka.Timeout.

The encapsulated value can be retrieved multiple times. The future will only block the first time the value
is accessed.

Parameters
timeout (float or None) – seconds to wait before timeout

Raise
pykka.Timeout if timeout is reached

Raise
encapsulated value if it is an exception

2.8. Futures 25

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None

Pykka, Release 4.0.2

Returns
encapsulated value if it is not an exception

set(value: T | None = None)→ None
Set the encapsulated value.

Parameters
value (any object or None) – the encapsulated value or nothing

Raise
an exception if set is called multiple times

set_exception(exc_info: OptExcInfo | None = None)→ None
Set an exception as the encapsulated value.

You can pass an exc_info three-tuple, as returned by sys.exc_info(). If you don’t pass exc_info,
sys.exc_info() will be called and the value returned by it used.

In other words, if you’re calling set_exception(), without any arguments, from an except block, the
exception you’re currently handling will automatically be set on the future.

Parameters
exc_info (three-tuple of (exc_class, exc_instance, traceback)) – the en-
capsulated exception

set_get_hook(func: Callable[[float | None], T])→ None
Set a function to be executed when get() is called.

The function will be called when get() is called, with the timeout value as the only argument. The
function’s return value will be returned from get().

New in version 1.2.

Parameters
func (function accepting a timeout value) – called to produce return value of
get()

filter(func: Callable[[J], bool])→ Future[Iterable[J]]
Return a new future with only the items passing the predicate function.

If the future’s value is an iterable, filter() will return a new future whose value is another iterable with
only the items from the first iterable for which func(item) is true. If the future’s value isn’t an iterable, a
TypeError will be raised when get() is called.

Example:

>>> import pykka
>>> f = pykka.ThreadingFuture()
>>> g = f.filter(lambda x: x > 10)
>>> g
<pykka.future.ThreadingFuture at ...>
>>> f.set(range(5, 15))
>>> f.get()
[5, 6, 7, 8, 9, 10, 11, 12, 13, 14]
>>> g.get()
[11, 12, 13, 14]

New in version 1.2.

26 Chapter 2. Project resources

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/sys.html#sys.exc_info
https://docs.python.org/3/library/sys.html#sys.exc_info
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/exceptions.html#TypeError

Pykka, Release 4.0.2

join(*futures: Future[Any])→ Future[Iterable[Any]]
Return a new future with a list of the result of multiple futures.

One or more futures can be passed as arguments to join(). The new future returns a list with the results
from all the joined futures.

Example:

>>> import pykka
>>> a = pykka.ThreadingFuture()
>>> b = pykka.ThreadingFuture()
>>> c = pykka.ThreadingFuture()
>>> f = a.join(b, c)
>>> a.set('def')
>>> b.set(123)
>>> c.set(False)
>>> f.get()
['def', 123, False]

New in version 1.2.

map(func: Callable[[T], M])→ Future[M]
Pass the result of the future through a function.

Example:

>>> import pykka
>>> f = pykka.ThreadingFuture()
>>> g = f.map(lambda x: x + 10)
>>> f.set(30)
>>> g.get()
40

>>> f = pykka.ThreadingFuture()
>>> g = f.map(lambda x: x['foo'])
>>> f.set({'foo': 'bar'}})
>>> g.get()
'bar'

New in version 1.2.

Changed in version 2.0: Previously, if the future’s result was an iterable (except a string), the function
was applied to each item in the iterable. This behavior is unpredictable and makes regular use cases like
extracting a single field from a dict difficult, thus the behavior has been simplified. Now, the entire result
value is passed to the function.

reduce(func: Callable[[R, J], R], *args: R)→ Future[R]
Reduce a future’s iterable result to a single value.

The function of two arguments is applied cumulatively to the items of the iterable, from left to right. The
result of the first function call is used as the first argument to the second function call, and so on, until the
end of the iterable. If the future’s value isn’t an iterable, a TypeError is raised.

reduce() accepts an optional second argument, which will be used as an initial value in the first function
call. If the iterable is empty, the initial value is returned.

Example:

2.8. Futures 27

https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/exceptions.html#TypeError

Pykka, Release 4.0.2

>>> import pykka
>>> f = pykka.ThreadingFuture()
>>> g = f.reduce(lambda x, y: x + y)
>>> f.set(['a', 'b', 'c'])
>>> g.get()
'abc'

>>> f = pykka.ThreadingFuture()
>>> g = f.reduce(lambda x, y: x + y)
>>> f.set([1, 2, 3])
>>> (1 + 2) + 3
6
>>> g.get()
6

>>> f = pykka.ThreadingFuture()
>>> g = f.reduce(lambda x, y: x + y, 5)
>>> f.set([1, 2, 3])
>>> ((5 + 1) + 2) + 3
11
>>> g.get()
11

>>> f = pykka.ThreadingFuture()
>>> g = f.reduce(lambda x, y: x + y, 5)
>>> f.set([])
>>> g.get()
5

New in version 1.2.

pykka.get_all(futures: Iterable[Future[T]], *, timeout: float | None = None)→ Iterable[T]
Collect all values encapsulated in the list of futures.

If timeout is not None, the method will wait for a reply for timeout seconds, and then raise pykka.Timeout.

Parameters

• futures (list of pykka.Future) – futures for the results to collect

• timeout (float or None) – seconds to wait before timeout

Raise
pykka.Timeout if timeout is reached

Returns
list of results

28 Chapter 2. Project resources

https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Iterable

Pykka, Release 4.0.2

2.9 Registry

class pykka.ActorRegistry

Registry which provides easy access to all running actors.

Contains global state, but should be thread-safe.

classmethod broadcast(message: Any, target_class: str | type[Actor] | None = None)→ None
Broadcast message to all actors of the specified target_class.

If no target_class is specified, the message is broadcasted to all actors.

Parameters

• message (any) – the message to send

• target_class (class or class name) – optional actor class to broadcast the message
to

classmethod get_all()→ list[ActorRef [Any]]
Get all running actors.

Returns
list of pykka.ActorRef

classmethod get_by_class(actor_class: type[A])→ list[ActorRef [A]]
Get all running actors of the given class or a subclass.

Parameters
actor_class (class) – actor class, or any superclass of the actor

Returns
list of pykka.ActorRef

classmethod get_by_class_name(actor_class_name: str)→ list[ActorRef [Any]]
Get all running actors of the given class name.

Parameters
actor_class_name (string) – actor class name

Returns
list of pykka.ActorRef

classmethod get_by_urn(actor_urn: str)→ ActorRef [Any] | None
Get an actor by its universally unique URN.

Parameters
actor_urn (string) – actor URN

Returns
pykka.ActorRef or None if not found

classmethod register(actor_ref: ActorRef[Any])→ None
Register an ActorRef in the registry.

This is done automatically when an actor is started, e.g. by calling Actor.start().

Parameters
actor_ref (pykka.ActorRef) – reference to the actor to register

classmethod stop_all(*, block: Literal[True], timeout: float | None = None)→ list[bool]
classmethod stop_all(*, block: Literal[False], timeout: float | None = None)→ list[Future[bool]]

2.9. Registry 29

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool

Pykka, Release 4.0.2

classmethod stop_all(*, block: bool = True, timeout: float | None = None)→ list[bool] |
list[Future[bool]]

Stop all running actors.

block and timeout works as for ActorRef.stop().

If block is True, the actors are guaranteed to be stopped in the reverse of the order they were started in.
This is helpful if you have simple dependencies in between your actors, where it is sufficient to shut down
actors in a LIFO manner: last started, first stopped.

If you have more complex dependencies in between your actors, you should take care to shut them down in
the required order yourself, e.g. by stopping dependees from a dependency’s on_stop() method.

Returns
If not blocking, a list with a future for each stop action. If blocking, a list of return values
from pykka.ActorRef.stop().

classmethod unregister(actor_ref: ActorRef[A])→ None
Remove an ActorRef from the registry.

This is done automatically when an actor is stopped, e.g. by calling Actor.stop().

Parameters
actor_ref (pykka.ActorRef) – reference to the actor to unregister

2.10 Exceptions

exception pykka.ActorDeadError

Exception raised when trying to use a dead or unavailable actor.

exception pykka.Timeout

Exception raised at future timeout.

2.11 Messages

The pykka.messages module contains Pykka’s own actor messages.

In general, you should not need to use any of these classes. However, they have been made part of the public API so
that certain optimizations can be done without touching Pykka’s internals.

An example is to combine ask() and ProxyCall to call a method on an actor without having to spend any resources
on creating a proxy object:

reply = actor_ref.ask(
ProxyCall(

attr_path=['my_method'],
args=['foo'],
kwargs={'bar': 'baz'}

)
)

Another example is to use tell() instead of ask() for the proxy method call, and thus avoid the creation of a future
for the return value if you don’t need it.

It should be noted that these optimizations should only be necessary in very special circumstances.

30 Chapter 2. Project resources

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None

Pykka, Release 4.0.2

New in version 2.0.

class pykka.messages.ProxyCall(attr_path: AttrPath, args: Tuple[Any, ...], kwargs: Dict[str, Any])
Message to ask the actor to call the method with the arguments.

attr_path: AttrPath

List with the path from the actor to the method.

args: Tuple[Any, ...]

List with positional arguments.

kwargs: Dict[str, Any]

Dict with keyword arguments.

class pykka.messages.ProxyGetAttr(attr_path: AttrPath)
Message to ask the actor to return the value of the attribute.

attr_path: AttrPath

List with the path from the actor to the attribute.

class pykka.messages.ProxySetAttr(attr_path: AttrPath, value: Any)
Message to ask the actor to set the attribute to the value.

attr_path: AttrPath

List with the path from the actor to the attribute.

value: Any

The value to set the attribute to.

2.12 Logging

Pykka uses Python’s standard loggingmodule for logging debug messages and any unhandled exceptions in the actors.
All log messages emitted by Pykka are issued to the logger named pykka, or a sub-logger of it.

2.12.1 Log levels

Pykka logs at several different log levels, so that you can filter out the parts you’re not interested in:

CRITICAL (highest)
This level is only used by the debug helpers in pykka.debug.

ERROR
Exceptions raised by an actor that are not captured into a reply future are logged at this level.

WARNING
Unhandled messages and other potential programming errors are logged at this level.

INFO
Exceptions raised by an actor that are captured into a reply future are logged at this level. If the future result is
used elsewhere, the exceptions is reraised there too. If the future result isn’t used, the log message is the only
trace of the exception happening.

To catch bugs earlier, it is recommended to show log messages this level during development.

DEBUG (lowest)
Every time an actor is started or stopped, and registered or unregistered in the actor registry, a message is logged
at this level.

2.12. Logging 31

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/logging.html#module-logging

Pykka, Release 4.0.2

In summary, you probably want to always let log messages at WARNING and higher through, while INFO should also be
kept on during development.

2.12.2 Log handlers

Out of the box, Pykka is set up with logging.NullHandler as the only log record handler. This is the recommended
approach for logging in libraries, so that the application developer using the library will have full control over how the
log messages from the library will be exposed to the application’s users.

In other words, if you want to see the log messages from Pykka anywhere, you need to add a useful handler to the root
logger or the logger named pykka to get any log output from Pykka.

The defaults provided by logging.basicConfig() is enough to get debug log messages from Pykka:

import logging
logging.basicConfig(level=logging.DEBUG)

2.12.3 Recommended setup

If your application is already using logging, and you want debug log output from your own application, but not from
Pykka, you can ignore debug log messages from Pykka by increasing the threshold on the Pykka logger to INFO level
or higher:

import logging
logging.basicConfig(level=logging.DEBUG)
logging.getLogger('pykka').setLevel(logging.INFO)

Given that you’ve fixed all unhandled exceptions logged at the INFO level during development, you probably want to
disable logging from Pykka at the INFO level in production to avoid logging exceptions that are properly handled:

import logging
logging.basicConfig(level=logging.DEBUG)
logging.getLogger('pykka').setLevel(logging.WARNING)

For more details on how to use logging, please refer to the Python standard library documentation.

2.13 Debug helpers

Debug helpers.

pykka.debug.log_thread_tracebacks(*_args: Any, **_kwargs: Any)→ None
Log a traceback for each running thread at logging.CRITICAL level.

This can be a convenient tool for debugging deadlocks.

The function accepts any arguments so that it can easily be used as e.g. a signal handler, but it does not use the
arguments for anything.

To use this function as a signal handler, setup logging with a logging.CRITICAL threshold or lower and make
your main thread register this with the signal module:

32 Chapter 2. Project resources

https://docs.python.org/3/library/logging.handlers.html#logging.NullHandler
https://docs.python.org/3/library/logging.html#logging.basicConfig
https://docs.python.org/3/library/logging.html#module-logging
https://docs.python.org/3/library/logging.html#module-logging
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/signal.html#module-signal

Pykka, Release 4.0.2

import logging
import signal

import pykka.debug

logging.basicConfig(level=logging.DEBUG)
signal.signal(signal.SIGUSR1, pykka.debug.log_thread_tracebacks)

If your application deadlocks, send the SIGUSR1 signal to the process:

kill -SIGUSR1 <pid of your process>

Signal handler caveats:

• The function must be registered as a signal handler by your main thread. If not, signal.signal() will
raise a ValueError.

• All signals in Python are handled by the main thread. Thus, the signal will only be handled, and the
tracebacks logged, if your main thread is available to do some work. Making your main thread idle using
time.sleep() is OK. The signal will awaken your main thread. Blocking your main thread on e.g. queue.
Queue.get() or pykka.Future.get() will break signal handling, and thus you won’t be able to signal
your process to print the thread tracebacks.

The morale is: setup signals using your main thread, start your actors, then let your main thread relax for the rest
of your application’s life cycle.

New in version 1.1.

2.13.1 Deadlock debugging

This is a complete example of how to use log_thread_tracebacks() to debug deadlocks:

#!/usr/bin/env python3

import logging
import os
import signal
import time

import pykka
import pykka.debug

class DeadlockActorA(pykka.ThreadingActor):
def foo(self, b):

logging.debug("This is foo calling bar")
return b.bar().get()

class DeadlockActorB(pykka.ThreadingActor):
def __init__(self, a):

super().__init__()
self.a = a

(continues on next page)

2.13. Debug helpers 33

https://docs.python.org/3/library/signal.html#signal.signal
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/time.html#time.sleep

Pykka, Release 4.0.2

(continued from previous page)

def bar(self):
logging.debug("This is bar calling foo; BOOM!")
return self.a.foo().get()

if __name__ == "__main__":
print("Setting up logging to get output from signal handler...")
logging.basicConfig(level=logging.DEBUG)

print("Registering signal handler...")
signal.signal(signal.SIGUSR1, pykka.debug.log_thread_tracebacks)

print("Starting actors...")
a = DeadlockActorA.start().proxy()
b = DeadlockActorB.start(a).proxy()

print("Now doing something stupid that will deadlock the actors...")
a.foo(b)

time.sleep(0.01) # Yield to actors, so we get output in a readable order

pid = os.getpid()
print("Making main thread relax; not block, not quit")
print(f"1) Use `kill -SIGUSR1 {pid:d}` to log thread tracebacks")
print(f"2) Then `kill {pid:d}` to terminate the process")
while True:

time.sleep(1)

Running the script outputs the following:

Setting up logging to get output from signal handler...
Registering signal handler...
Starting actors...
DEBUG:pykka:Registered DeadlockActorA (urn:uuid:60803d09-cf5a-46cc-afdc-0c813e2e6647)
DEBUG:pykka:Starting DeadlockActorA (urn:uuid:60803d09-cf5a-46cc-afdc-0c813e2e6647)
DEBUG:pykka:Registered DeadlockActorB (urn:uuid:626adc83-ae35-439c-866a-85a3e29fd42c)
DEBUG:pykka:Starting DeadlockActorB (urn:uuid:626adc83-ae35-439c-866a-85a3e29fd42c)
Now doing something stupid that will deadlock the actors...
DEBUG:root:This is foo calling bar
DEBUG:root:This is bar calling foo; BOOM!
Making main thread relax; not block, not quit
1) Use `kill -SIGUSR1 2284` to log thread tracebacks
2) Then `kill 2284` to terminate the process

The two actors are now deadlocked waiting for each other while the main thread is idling, ready to process any signals.

To debug the deadlock, send the SIGUSR1 signal to the process, which has PID 2284 in this example:

kill -SIGUSR1 2284

This makes the main thread log the current traceback for each thread. The logging output shows that the two actors are
both waiting for data from the other actor:

34 Chapter 2. Project resources

Pykka, Release 4.0.2

CRITICAL:pykka:Current state of DeadlockActorB-2 (ident: 140151493752576):
File "/usr/lib/python3.6/threading.py", line 884, in _bootstrap

self._bootstrap_inner()
File "/usr/lib/python3.6/threading.py", line 916, in _bootstrap_inner

self.run()
File "/usr/lib/python3.6/threading.py", line 864, in run

self._target(*self._args, **self._kwargs)
File ".../pykka/actor.py", line 195, in _actor_loop

response = self._handle_receive(message)
File ".../pykka/actor.py", line 297, in _handle_receive

return callee(*message['args'], **message['kwargs'])
File "examples/deadlock_debugging.py", line 25, in bar

return self.a.foo().get()
File ".../pykka/threading.py", line 47, in get

self._data = self._queue.get(True, timeout)
File "/usr/lib/python3.6/queue.py", line 164, in get

self.not_empty.wait()
File "/usr/lib/python3.6/threading.py", line 295, in wait

waiter.acquire()

CRITICAL:pykka:Current state of DeadlockActorA-1 (ident: 140151572883200):
File "/usr/lib/python3.6/threading.py", line 884, in _bootstrap

self._bootstrap_inner()
File "/usr/lib/python3.6/threading.py", line 916, in _bootstrap_inner

self.run()
File "/usr/lib/python3.6/threading.py", line 864, in run

self._target(*self._args, **self._kwargs)
File ".../pykka/actor.py", line 195, in _actor_loop

response = self._handle_receive(message)
File ".../pykka/actor.py", line 297, in _handle_receive

return callee(*message['args'], **message['kwargs'])
File "examples/deadlock_debugging.py", line 15, in foo

return b.bar().get()
File ".../pykka/threading.py", line 47, in get

self._data = self._queue.get(True, timeout)
File "/usr/lib/python3.6/queue.py", line 164, in get

self.not_empty.wait()
File "/usr/lib/python3.6/threading.py", line 295, in wait

waiter.acquire()

CRITICAL:pykka:Current state of MainThread (ident: 140151593330496):
File ".../examples/deadlock_debugging.py", line 49, in <module>

time.sleep(1)
File ".../pykka/debug.py", line 63, in log_thread_tracebacks

stack = ''.join(traceback.format_stack(frame))

2.13. Debug helpers 35

Pykka, Release 4.0.2

2.14 Type hints

The pykka.typing module contains helpers to improve type hints.

Since Pykka 4.0, Pykka has complete type hints for the public API, tested using both Mypy and Pyright.

Due to the dynamic nature of ActorProxy objects, it is not possible to automatically type them correctly. This module
contains helpers to manually create additional classes that correctly describe the type hints for the proxy objects. In
cases where a proxy objects is used a lot, this might be worth the extra effort to increase development speed and catch
bugs earlier.

Example usage:

from typing import cast

from pykka import ActorProxy, ThreadingActor
from pykka.typing import ActorMemberMixin, proxy_field, proxy_method

1) The actor class to be proxied is defined as usual:

class CircleActor(ThreadingActor):
pi = 3.14

def area(self, radius: float) -> float:
return self.pi * radius**2

2) In addition, a proxy class is defined, which inherits from ActorMemberMixin
to get the correct type hints for the actor methods:

class CircleProxy(ActorMemberMixin, ActorProxy[CircleActor]):

For each field on the proxy, a proxy_field is defined:
pi = proxy_field(CircleActor.pi)

For each method on the proxy, a proxy_method is defined:
area = proxy_method(CircleActor.area)

3) The actor is started like usual, and a proxy is created as usual, but the
proxy is casted to the recently defined proxy class:
proxy = cast(CircleProxy, CircleActor.start().proxy())

Now, the type hints for the proxy are correct:

reveal_type(proxy.stop)
Revealed type is 'Callable[[], pykka.Future[None]]'

reveal_type(proxy.pi)
Revealed type is 'pykka.Future[float]'

reveal_type(proxy.area))
(continues on next page)

36 Chapter 2. Project resources

https://www.mypy-lang.org/
https://github.com/microsoft/pyright

Pykka, Release 4.0.2

(continued from previous page)

Revealed type is 'Callable[[float], pykka.Future[float]]'

New in version 4.0.

pykka.typing.proxy_field(field: T)→ Future[T]
Type a field on an actor proxy.

New in version 4.0.

pykka.typing.proxy_method(field: Callable[Concatenate[Any, P], T])→ Method[P, Future[T]]
Type a method on an actor proxy.

New in version 4.0.

class pykka.typing.ActorMemberMixin

Mixin class for typing Actor methods which are accessible via proxy instances.

New in version 4.0.

2.14. Type hints 37

Pykka, Release 4.0.2

38 Chapter 2. Project resources

CHAPTER

THREE

LICENSE

Pykka is copyright 2010-2024 Stein Magnus Jodal and contributors. Pykka is licensed under the Apache License,
Version 2.0.

39

https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0

Pykka, Release 4.0.2

40 Chapter 3. License

PYTHON MODULE INDEX

d
pykka.debug, 32

m
pykka.messages, 30

p
pykka, 18

t
pykka.typing, 36

41

Pykka, Release 4.0.2

42 Python Module Index

INDEX

Symbols
__call__() (pykka.CallableProxy method), 24
__version__ (in module pykka), 18

A
Actor (class in pykka), 18
actor_class (pykka.ActorRef attribute), 20
actor_inbox (pykka.Actor attribute), 19
actor_inbox (pykka.ActorRef attribute), 20
actor_ref (pykka.Actor property), 19
actor_ref (pykka.ActorProxy attribute), 24
actor_stopped (pykka.Actor attribute), 19
actor_stopped (pykka.ActorRef attribute), 20
actor_urn (pykka.Actor attribute), 19
actor_urn (pykka.ActorRef attribute), 20
ActorDeadError, 30
ActorMemberMixin (class in pykka.typing), 37
ActorProxy (class in pykka), 22
ActorRef (class in pykka), 20
ActorRegistry (class in pykka), 29
args (pykka.messages.ProxyCall attribute), 31
ask() (pykka.ActorRef method), 21
attr_path (pykka.messages.ProxyCall attribute), 31
attr_path (pykka.messages.ProxyGetAttr attribute), 31
attr_path (pykka.messages.ProxySetAttr attribute), 31

B
broadcast() (pykka.ActorRegistry class method), 29

C
CallableProxy (class in pykka), 24

D
defer() (pykka.CallableProxy method), 24

F
filter() (pykka.Future method), 26
Future (class in pykka), 25

G
get() (pykka.Future method), 25

get() (pykka.ThreadingFuture method), 15
get_all() (in module pykka), 28
get_all() (pykka.ActorRegistry class method), 29
get_by_class() (pykka.ActorRegistry class method),

29
get_by_class_name() (pykka.ActorRegistry class

method), 29
get_by_urn() (pykka.ActorRegistry class method), 29

I
is_alive() (pykka.ActorRef method), 20

J
join() (pykka.Future method), 26

K
kwargs (pykka.messages.ProxyCall attribute), 31

L
log_thread_tracebacks() (in module pykka.debug),

32

M
map() (pykka.Future method), 27
module

pykka, 18
pykka.debug, 32
pykka.messages, 30
pykka.typing, 36

O
on_failure() (pykka.Actor method), 19
on_receive() (pykka.Actor method), 20
on_start() (pykka.Actor method), 19
on_stop() (pykka.Actor method), 19

P
proxy() (pykka.ActorRef method), 21
proxy_field() (in module pykka.typing), 37
proxy_method() (in module pykka.typing), 37
ProxyCall (class in pykka.messages), 31

43

Pykka, Release 4.0.2

ProxyGetAttr (class in pykka.messages), 31
ProxySetAttr (class in pykka.messages), 31
pykka

module, 18
pykka.debug

module, 32
pykka.messages

module, 30
pykka.typing

module, 36
Python Enhancement Proposals

PEP 386, 18
PEP 396, 18

R
reduce() (pykka.Future method), 27
register() (pykka.ActorRegistry class method), 29

S
set() (pykka.Future method), 26
set() (pykka.ThreadingFuture method), 16
set_exception() (pykka.Future method), 26
set_exception() (pykka.ThreadingFuture method), 16
set_get_hook() (pykka.Future method), 26
start() (pykka.Actor class method), 18
stop() (pykka.Actor method), 19
stop() (pykka.ActorRef method), 21
stop_all() (pykka.ActorRegistry class method), 29

T
tell() (pykka.ActorRef method), 20
ThreadingActor (class in pykka), 16
ThreadingFuture (class in pykka), 15
Timeout, 30
traversable() (in module pykka), 24

U
unregister() (pykka.ActorRegistry class method), 30
use_daemon_thread (pykka.ThreadingActor attribute),

16

V
value (pykka.messages.ProxySetAttr attribute), 31

44 Index

	Inspiration
	Project resources
	Quickstart
	Rules of the actor model
	The actor implementations
	A basic actor
	Sending messages
	Replying to messages

	Actor proxies
	Traversable attributes on proxies

	Examples
	Plain actor
	Actor with proxy
	Multiple cooperating actors
	Pool of actors sharing work
	Mopidy music server

	Runtimes
	Threading
	Installation
	API

	Testing
	An example

	Module
	Actors
	Proxies
	Futures
	Registry
	Exceptions
	Messages
	Logging
	Log levels
	Log handlers
	Recommended setup

	Debug helpers
	Deadlock debugging

	Type hints

	License
	Python Module Index
	Index

