
Pykka Documentation
Release 2.0.3

Stein Magnus Jodal

Aug 09, 2022

Usage

1 Quickstart 3
1.1 Rules of the actor model . 3
1.2 The actor implementations . 3
1.3 A basic actor . 4
1.4 Actor proxies . 6

2 Examples 9
2.1 Plain actor . 9
2.2 Actor with proxy . 10
2.3 Multiple cooperating actors . 11
2.4 Pool of actors sharing work . 12
2.5 Mopidy music server . 13

3 Pykka API 15
3.1 Actors . 15
3.2 Proxies . 19
3.3 Futures . 22
3.4 Registry . 25
3.5 Exceptions . 26
3.6 Messages . 26
3.7 Logging . 27
3.8 Debug helpers . 28

4 Runtimes 33
4.1 Threading . 33
4.2 gevent . 34
4.3 eventlet . 36

5 Testing 39
5.1 An example . 39

6 Changes 41
6.1 v2.0.3 (2020-11-27) . 41
6.2 v2.0.2 (2019-12-02) . 41
6.3 v2.0.1 (2019-10-10) . 41
6.4 v2.0.0 (2019-05-07) . 41
6.5 v1.2.1 (2015-07-20) . 43

i

6.6 v1.2.0 (2013-07-15) . 44
6.7 v1.1.0 (2013-01-19) . 44
6.8 v1.0.1 (2012-12-12) . 45
6.9 v1.0.0 (2012-10-26) . 45
6.10 v0.16 (2012-09-19) . 46
6.11 v0.15 (2012-08-11) . 46
6.12 v0.14 (2012-04-22) . 46
6.13 v0.13 (2011-09-24) . 46
6.14 v0.12.4 (2011-07-30) . 46
6.15 v0.12.3 (2011-06-25) . 47
6.16 v0.12.2 (2011-05-05) . 47
6.17 v0.12.1 (2011-04-25) . 47
6.18 v0.12 (2011-03-30) . 47

7 Inspiration 49
7.1 What Pykka is not . 49

8 Authors 51

Python Module Index 53

Index 55

ii

Pykka Documentation, Release 2.0.3

Pykka is a Python implementation of the actor model. The actor model introduces some simple rules to control the
sharing of state and cooperation between execution units, which makes it easier to build concurrent applications.

For details and code examples, see the Pykka documentation.

Pykka is available from PyPI. To install it, run:

pip install pykka

Pykka works with CPython 2.7 and 3.5+, as well as PyPy 2.7 and 3.5+.

Usage 1

https://en.wikipedia.org/wiki/Actor_model
https://www.pykka.org/

Pykka Documentation, Release 2.0.3

2 Usage

CHAPTER 1

Quickstart

Pykka is a Python implementation of the actor model. The actor model introduces some simple rules to control the
sharing of state and cooperation between execution units, which makes it easier to build concurrent applications.

1.1 Rules of the actor model

• An actor is an execution unit that executes concurrently with other actors.

• An actor does not share state with anybody else, but it can have its own state.

• An actor can only communicate with other actors by sending and receiving messages. It can only send messages
to actors whose address it has.

• When an actor receives a message it may take actions like:

– altering its own state, e.g. so that it can react differently to a future message,

– sending messages to other actors, or

– starting new actors.

None of the actions are required, and they may be applied in any order.

• An actor only processes one message at a time. In other words, a single actor does not give you any concurrency,
and it does not need to use locks internally to protect its own state.

1.2 The actor implementations

Pykka’s actor API comes with the following implementations:

• Threads: Each ThreadingActor is executed by a regular thread, i.e. threading.Thread. As handles
for future results, it uses ThreadingFuture which is a thin wrapper around a queue.Queue. It has no
dependencies outside Python itself. ThreadingActor plays well together with non-actor threads.

3

https://en.wikipedia.org/wiki/Actor_model
https://docs.python.org/3/library/threading.html#threading.Thread
https://docs.python.org/3/library/queue.html#queue.Queue

Pykka Documentation, Release 2.0.3

Note: If you monkey patch the standard library with gevent or eventlet you can still use
ThreadingActor and ThreadingFuture. Python’s threads will transparently use the underlying im-
plementation provided by gevent or Eventlet.

• gevent: Each GeventActor is executed by a gevent greenlet. gevent is a coroutine-based Python networking
library built on top of libev event loop. GeventActor is generally faster than ThreadingActor.

• Eventlet: Each EventletActor is executed by an Eventlet greenlet.

Pykka has an extensive test suite, and is tested on CPython 2.7, and 3.5+, as well as PyPy.

1.3 A basic actor

In its most basic form, a Pykka actor is a class with an on_receive() method:

import pykka

class Greeter(pykka.ThreadingActor):
def on_receive(self, message):

print('Hi there!')

To start an actor, you call the class’ method start(), which starts the actor and returns an actor reference which can
be used to communicate with the running actor:

actor_ref = Greeter.start()

If you need to pass arguments to the actor upon creation, you can pass them to the start() method, and receive
them using the regular __init__() method:

import pykka

class Greeter(pykka.ThreadingActor):
def __init__(self, greeting='Hi there!'):

super().__init__()
self.greeting = greeting

def on_receive(self, message):
print(self.greeting)

actor_ref = Greeter.start(greeting='Hi you!')

It can be useful to know that the init method is run in the execution context that starts the actor. There are also hooks
for running code in the actor’s own execution context when the actor starts, when it stops, and when an unhandled
exception is raised. Check out the full API docs for the details.

To stop an actor, you can either call stop() on the ActorRef:

actor_ref.stop()

Or, if an actor wants to stop itself, it can simply do so:

self.stop()

Once an actor has been stopped, it cannot be restarted.

4 Chapter 1. Quickstart

http://www.gevent.org/
https://eventlet.net/

Pykka Documentation, Release 2.0.3

1.3.1 Sending messages

To send a message to the actor, you can either use the tell() method or the ask() method on the actor_ref
object. tell() will fire off a message without waiting for an answer. In other words, it will never block. ask()
will by default block until an answer is returned, potentially forever. If you provide a timeout keyword argument to
ask(), you can specify for how long it should wait for an answer. If you want an answer, but don’t need it right away
because you have other stuff you can do first, you can pass block=False, and ask() will immediately return a
“future” object.

The message itself can be of any type, for example a dict or your own message class type.

Summarized in code:

actor_ref.tell('Hi!')
=> Returns nothing. Will never block.

answer = actor_ref.ask('Hi?')
=> May block forever waiting for an answer

answer = actor_ref.ask('Hi?', timeout=3)
=> May wait 3s for an answer, then raises exception if no answer.

future = actor_ref.ask('Hi?', block=False)
=> Will return a future object immediately.
answer = future.get()
=> May block forever waiting for an answer
answer = future.get(timeout=0.1)
=> May wait 0.1s for an answer, then raises exception if no answer.

Warning: For performance reasons, Pykka does not clone the message you send before delivering it to the
receiver. You are yourself responsible for either using immutable data structures or to copy.deepcopy() the
data you’re sending off to other actors.

1.3.2 Replying to messages

If a message is sent using actor_ref.ask() you can reply to the sender of the message by simply returning a
value from the on_receive() method:

import pykka

class Greeter(pykka.ThreadingActor):
def on_receive(self, message):

return 'Hi there!'

actor_ref = Greeter.start()

answer = actor_ref.ask('Hi?')
print(answer)
=> 'Hi there!'

None is a valid response so if you return None explicitly, or don’t return at all, a response containing None will be
returned to the sender.

From the point of view of the actor it doesn’t matter whether the message was sent using tell() or ask(). When
the sender doesn’t expect a response the on_receive() return value will be ignored.

1.3. A basic actor 5

https://docs.python.org/3/library/copy.html#copy.deepcopy

Pykka Documentation, Release 2.0.3

The situation is similar in regard to exceptions: when ask() is used and you raise an exception from within
on_receive() method, the exception will propagate to the sender:

import pykka

class Raiser(pykka.ThreadingActor):
def on_receive(self, message):

raise Exception('Oops')

actor_ref = Raiser.start()

try:
actor_ref.ask('How are you?')

except Exception as e:
print(repr(e))
=> Exception('Oops')

1.4 Actor proxies

With the basic building blocks provided by actors and futures, we got everything we need to build more advanced
abstractions. Pykka provides a single abstraction on top of the basic actor model, named “actor proxies”. You can use
Pykka without proxies, but we’ve found it to be a very convenient abstraction when building Mopidy.

Let’s create an actor and start it:

import pykka

class Calculator(pykka.ThreadingActor):
def __init__(self):

super().__init__()
self.last_result = None

def add(self, a, b=None):
if b is not None:

self.last_result = a + b
else:

self.last_result += a
return self.last_result

def sub(self, a, b=None):
if b is not None:

self.last_result = a - b
else:

self.last_result -= a
return self.last_result

actor_ref = Calculator.start()

You can create a proxy from any reference to a running actor:

proxy = actor_ref.proxy()

The proxy object will use introspection to figure out what public attributes and methods the actor has, and then mirror
the full API of the actor. Any attribute or method prefixed with underscore will be ignored, which is the convention
for keeping stuff private in Python.

6 Chapter 1. Quickstart

https://www.mopidy.com/

Pykka Documentation, Release 2.0.3

When we access attributes or call methods on the proxy, it will ask the actor to access the given attribute or call the
given method, and return the result to us. All results are wrapped in “future” objects, so you must use the get()
method to get the actual data:

future = proxy.add(1, 3)
future.get()
=> 4

proxy.last_result.get()
=> 4

Since an actor only processes one message at the time and all messages are kept in order, you don’t need to add the
call to get() just to block processing until the actor has completed processing your last message:

proxy.sub(5)
proxy.add(3)
proxy.last_result.get()
=> 2

Since assignment doesn’t return anything, it works just like on regular objects:

proxy.last_result = 17
proxy.last_result.get()
=> 17

Under the hood, the proxy does everything by sending messages to the actor using the regular ask() method we
talked about previously. By doing so, it maintains the actor model restrictions. The only “magic” happening here
is some basic introspection and automatic building of three different message types; one for method calls, one for
attribute reads, and one for attribute writes.

1.4.1 Traversable attributes on proxies

Sometimes you’ll want to access an actor attribute’s methods or attributes through a proxy. For this case, Pykka
supports “traversable attributes”. By marking an actor attribute as traversable, Pykka will not return the attribute when
accessed, but wrap it in a new proxy which is returned instead.

To mark an attribute as traversable, simply mark it with the traversable() function:

import pykka

class AnActor(pykka.ThreadingActor):
playback = pykka.traversable(Playback())

class Playback(object):
def play(self):

return True

proxy = AnActor.start().proxy()
play_success = proxy.playback.play().get()

You can access methods and attributes nested as deep as you like, as long as all attributes on the path between the actor
and the method or attribute on the end are marked as traversable.

1.4. Actor proxies 7

Pykka Documentation, Release 2.0.3

8 Chapter 1. Quickstart

CHAPTER 2

Examples

The examples/ dir in Pykka’s Git repo includes some runnable examples of Pykka usage.

2.1 Plain actor

#!/usr/bin/env python3

import pykka

GetMessages = object()

class PlainActor(pykka.ThreadingActor):
def __init__(self):

super().__init__()
self.stored_messages = []

def on_receive(self, message):
if message is GetMessages:

return self.stored_messages
else:

self.stored_messages.append(message)

if __name__ == '__main__':
actor = PlainActor.start()
actor.tell({'no': 'Norway', 'se': 'Sweden'})
actor.tell({'a': 3, 'b': 4, 'c': 5})
print(actor.ask(GetMessages))
actor.stop()

Output:

9

https://github.com/jodal/pykka/

Pykka Documentation, Release 2.0.3

[{'no': 'Norway', 'se': 'Sweden'}, {'a': 3, 'b': 4, 'c': 5}]

2.2 Actor with proxy

#!/usr/bin/env python3

import threading
import time

import pykka

class AnActor(pykka.ThreadingActor):
field = 'this is the value of AnActor.field'

def proc(self):
log('this was printed by AnActor.proc()')

def func(self):
time.sleep(0.5) # Block a bit to make it realistic
return 'this was returned by AnActor.func() after a delay'

def log(msg):
thread_name = threading.current_thread().name
print(f'{thread_name}: {msg}')

if __name__ == '__main__':
actor = AnActor.start().proxy()
for _ in range(3):

Method with side effect
log('calling AnActor.proc() ...')
actor.proc()

Method with return value
log('calling AnActor.func() ...')
result = actor.func() # Does not block, returns a future
log('printing result ... (blocking)')
log(result.get()) # Blocks until ready

Field reading
log('reading AnActor.field ...')
result = actor.field # Does not block, returns a future
log('printing result ... (blocking)')
log(result.get()) # Blocks until ready

Field writing
log('writing AnActor.field ...')
actor.field = 'new value' # Assignment does not block
result = actor.field # Does not block, returns a future
log('printing new field value ... (blocking)')
log(result.get()) # Blocks until ready

actor.stop()

10 Chapter 2. Examples

Pykka Documentation, Release 2.0.3

Output:

MainThread: calling AnActor.proc() ...
MainThread: calling AnActor.func() ...
MainThread: printing result ... (blocking)
AnActor-1: this was printed by AnActor.proc()
MainThread: this was returned by AnActor.func() after a delay
MainThread: reading AnActor.field ...
MainThread: printing result ... (blocking)
MainThread: this is the value of AnActor.field
MainThread: writing AnActor.field ...
MainThread: printing new field value ... (blocking)
MainThread: new value
MainThread: calling AnActor.proc() ...
MainThread: calling AnActor.func() ...
MainThread: printing result ... (blocking)
AnActor-1: this was printed by AnActor.proc()
MainThread: this was returned by AnActor.func() after a delay
MainThread: reading AnActor.field ...
MainThread: printing result ... (blocking)
MainThread: new value
MainThread: writing AnActor.field ...
MainThread: printing new field value ... (blocking)
MainThread: new value
MainThread: calling AnActor.proc() ...
MainThread: calling AnActor.func() ...
AnActor-1: this was printed by AnActor.proc()
MainThread: printing result ... (blocking)
MainThread: this was returned by AnActor.func() after a delay
MainThread: reading AnActor.field ...
MainThread: printing result ... (blocking)
MainThread: new value
MainThread: writing AnActor.field ...
MainThread: printing new field value ... (blocking)
MainThread: new value

2.3 Multiple cooperating actors

#!/usr/bin/env python3

import pykka

class Adder(pykka.ThreadingActor):
def add_one(self, i):

print(f'{self} is increasing {i}')
return i + 1

class Bookkeeper(pykka.ThreadingActor):
def __init__(self, adder):

super().__init__()
self.adder = adder

def count_to(self, target):

(continues on next page)

2.3. Multiple cooperating actors 11

Pykka Documentation, Release 2.0.3

(continued from previous page)

i = 0
while i < target:

i = self.adder.add_one(i).get()
print(f'{self} got {i} back')

if __name__ == '__main__':
adder = Adder.start().proxy()
bookkeeper = Bookkeeper.start(adder).proxy()
bookkeeper.count_to(10).get()
pykka.ActorRegistry.stop_all()

Output:

Adder (urn:uuid:f50029eb-7cea-4ab9-98bf-a5bf65af8b8f) is increasing 0
Bookkeeper (urn:uuid:4f2d4e78-7a33-4c4f-86ac-7c415a7205f4) got 1 back
Adder (urn:uuid:f50029eb-7cea-4ab9-98bf-a5bf65af8b8f) is increasing 1
Bookkeeper (urn:uuid:4f2d4e78-7a33-4c4f-86ac-7c415a7205f4) got 2 back
Adder (urn:uuid:f50029eb-7cea-4ab9-98bf-a5bf65af8b8f) is increasing 2
Bookkeeper (urn:uuid:4f2d4e78-7a33-4c4f-86ac-7c415a7205f4) got 3 back
Adder (urn:uuid:f50029eb-7cea-4ab9-98bf-a5bf65af8b8f) is increasing 3
Bookkeeper (urn:uuid:4f2d4e78-7a33-4c4f-86ac-7c415a7205f4) got 4 back
Adder (urn:uuid:f50029eb-7cea-4ab9-98bf-a5bf65af8b8f) is increasing 4
Bookkeeper (urn:uuid:4f2d4e78-7a33-4c4f-86ac-7c415a7205f4) got 5 back
Adder (urn:uuid:f50029eb-7cea-4ab9-98bf-a5bf65af8b8f) is increasing 5
Bookkeeper (urn:uuid:4f2d4e78-7a33-4c4f-86ac-7c415a7205f4) got 6 back
Adder (urn:uuid:f50029eb-7cea-4ab9-98bf-a5bf65af8b8f) is increasing 6
Bookkeeper (urn:uuid:4f2d4e78-7a33-4c4f-86ac-7c415a7205f4) got 7 back
Adder (urn:uuid:f50029eb-7cea-4ab9-98bf-a5bf65af8b8f) is increasing 7
Bookkeeper (urn:uuid:4f2d4e78-7a33-4c4f-86ac-7c415a7205f4) got 8 back
Adder (urn:uuid:f50029eb-7cea-4ab9-98bf-a5bf65af8b8f) is increasing 8
Bookkeeper (urn:uuid:4f2d4e78-7a33-4c4f-86ac-7c415a7205f4) got 9 back
Adder (urn:uuid:f50029eb-7cea-4ab9-98bf-a5bf65af8b8f) is increasing 9
Bookkeeper (urn:uuid:4f2d4e78-7a33-4c4f-86ac-7c415a7205f4) got 10 back

2.4 Pool of actors sharing work

#!/usr/bin/env python3

"""
Resolve a bunch of IP addresses using a pool of resolver actors.

Based on example contributed by Kristian Klette <klette@klette.us>.

Either run without arguments:

./resolver.py

Or specify pool size and IPs to resolve:

./resolver.py 3 193.35.52.{1,2,3,4,5,6,7,8,9}
"""

import pprint
(continues on next page)

12 Chapter 2. Examples

Pykka Documentation, Release 2.0.3

(continued from previous page)

import socket
import sys

import pykka

class Resolver(pykka.ThreadingActor):
def resolve(self, ip):

try:
info = socket.gethostbyaddr(ip)
print(f'Finished resolving {ip}')
return info[0]

except Exception:
print(f'Failed resolving {ip}')
return None

def run(pool_size, *ips):
Start resolvers
resolvers = [Resolver.start().proxy() for _ in range(pool_size)]

Distribute work by mapping IPs to resolvers (not blocking)
hosts = []
for i, ip in enumerate(ips):

hosts.append(resolvers[i % len(resolvers)].resolve(ip))

Gather results (blocking)
ip_to_host = zip(ips, pykka.get_all(hosts))
pprint.pprint(list(ip_to_host))

Clean up
pykka.ActorRegistry.stop_all()

if __name__ == '__main__':
if len(sys.argv[1:]) >= 2:

run(int(sys.argv[1]), *sys.argv[2:])
else:

ips = [f'193.35.52.{i}' for i in range(1, 50)]
run(10, *ips)

2.5 Mopidy music server

Pykka was originally created back in 2011 as a formalization of concurrency patterns that emerged in the Mopidy
music server. The original Pykka source code wasn’t extracted from Mopidy, but it built and improved on the concepts
from Mopidy. Mopidy was later ported to build on Pykka instead of its own concurrency abstractions.

Mopidy still use Pykka extensively to keep independent parts, like the MPD and HTTP frontend servers or the Spotify
and Google Music integrations, running independently. Every one of Mopidy’s more than 100 extensions has at least
one Pykka actor. By running each extension as an independent actor, errors and bugs in one extension is attempted
isolated, to reduce the effect on the rest of the system.

You can browse the Mopidy source code to find many real life examples of Pykka usage.

2.5. Mopidy music server 13

https://www.mopidy.com/
https://www.mopidy.com/
https://github.com/mopidy/mopidy

Pykka Documentation, Release 2.0.3

14 Chapter 2. Examples

CHAPTER 3

Pykka API

pykka.__version__
Pykka’s PEP 386 and PEP 396 compatible version number

3.1 Actors

class pykka.Actor(*args, **kwargs)
To create an actor:

1. subclass one of the Actor implementations:

• ThreadingActor

• GeventActor

• EventletActor

2. implement your methods, including __init__(), as usual,

3. call Actor.start() on your actor class, passing the method any arguments for your constructor.

To stop an actor, call Actor.stop() or ActorRef.stop().

For example:

import pykka

class MyActor(pykka.ThreadingActor):
def __init__(self, my_arg=None):

super().__init__()
... # My optional init code with access to start() arguments

def on_start(self):
... # My optional setup code in same context as on_receive()

def on_stop(self):

(continues on next page)

15

https://www.python.org/dev/peps/pep-0386
https://www.python.org/dev/peps/pep-0396

Pykka Documentation, Release 2.0.3

(continued from previous page)

... # My optional cleanup code in same context as on_receive()

def on_failure(self, exception_type, exception_value, traceback):
... # My optional cleanup code in same context as on_receive()

def on_receive(self, message):
... # My optional message handling code for a plain actor

def a_method(self, ...):
... # My regular method to be used through an ActorProxy

my_actor_ref = MyActor.start(my_arg=...)
my_actor_ref.stop()

classmethod start(*args, **kwargs)
Start an actor and register it in the ActorRegistry .

Any arguments passed to start() will be passed on to the class constructor.

Behind the scenes, the following is happening when you call start():

1. The actor is created:

1. actor_urn is initialized with the assigned URN.

2. actor_inbox is initialized with a new actor inbox.

3. actor_ref is initialized with a pykka.ActorRef object for safely communicating with the
actor.

4. At this point, your __init__() code can run.

2. The actor is registered in pykka.ActorRegistry .

3. The actor receive loop is started by the actor’s associated thread/greenlet.

Returns a ActorRef which can be used to access the actor in a safe manner

actor_urn = None
The actor URN string is a universally unique identifier for the actor. It may be used for looking up a
specific actor using ActorRegistry.get_by_urn().

actor_inbox = None
The actor’s inbox. Use ActorRef.tell(), ActorRef.ask(), and friends to put messages in the
inbox.

actor_stopped = None
A threading.Event representing whether or not the actor should continue processing messages. Use
stop() to change it.

actor_ref = None
The actor’s ActorRef instance.

stop()
Stop the actor.

It’s equivalent to calling ActorRef.stop() with block=False.

on_start()
Hook for doing any setup that should be done after the actor is started, but before it starts processing
messages.

16 Chapter 3. Pykka API

https://docs.python.org/3/library/threading.html#threading.Event

Pykka Documentation, Release 2.0.3

For ThreadingActor, this method is executed in the actor’s own thread, while __init__() is exe-
cuted in the thread that created the actor.

If an exception is raised by this method the stack trace will be logged, and the actor will stop.

on_stop()
Hook for doing any cleanup that should be done after the actor has processed the last message, and before
the actor stops.

This hook is not called when the actor stops because of an unhandled exception. In that case, the
on_failure() hook is called instead.

For ThreadingActor this method is executed in the actor’s own thread, immediately before the thread
exits.

If an exception is raised by this method the stack trace will be logged, and the actor will stop.

on_failure(exception_type, exception_value, traceback)
Hook for doing any cleanup after an unhandled exception is raised, and before the actor stops.

For ThreadingActor this method is executed in the actor’s own thread, immediately before the thread
exits.

The method’s arguments are the relevant information from sys.exc_info().

If an exception is raised by this method the stack trace will be logged, and the actor will stop.

on_receive(message)
May be implemented for the actor to handle regular non-proxy messages.

Parameters message (any) – the message to handle

Returns anything that should be sent as a reply to the sender

class pykka.ActorRef(actor)
Reference to a running actor which may safely be passed around.

ActorRef instances are returned by Actor.start() and the lookup methods in ActorRegistry . You
should never need to create ActorRef instances yourself.

Parameters actor (Actor) – the actor to wrap

actor_class = None
The class of the referenced actor.

actor_urn = None
See Actor.actor_urn.

actor_inbox = None
See Actor.actor_inbox.

actor_stopped = None
See Actor.actor_stopped.

is_alive()
Check if actor is alive.

This is based on the actor’s stopped flag. The actor is not guaranteed to be alive and responding even
though is_alive() returns True.

Returns Returns True if actor is alive, False otherwise.

tell(message)
Send message to actor without waiting for any response.

Will generally not block, but if the underlying queue is full it will block until a free slot is available.

3.1. Actors 17

https://docs.python.org/3/library/sys.html#sys.exc_info

Pykka Documentation, Release 2.0.3

Parameters message (any) – message to send

Raise pykka.ActorDeadError if actor is not available

Returns nothing

ask(message, block=True, timeout=None)
Send message to actor and wait for the reply.

The message can be of any type. If block is False, it will immediately return a Future instead of
blocking.

If block is True, and timeout is None, as default, the method will block until it gets a reply, poten-
tially forever. If timeout is an integer or float, the method will wait for a reply for timeout seconds,
and then raise pykka.Timeout.

Parameters

• message (any) – message to send

• block (boolean) – whether to block while waiting for a reply

• timeout (float or None) – seconds to wait before timeout if blocking

Raise pykka.Timeout if timeout is reached if blocking

Raise any exception returned by the receiving actor if blocking

Returns pykka.Future, or response if blocking

stop(block=True, timeout=None)
Send a message to the actor, asking it to stop.

Returns True if actor is stopped or was being stopped at the time of the call. False if actor was already
dead. If block is False, it returns a future wrapping the result.

Messages sent to the actor before the actor is asked to stop will be processed normally before it stops.

Messages sent to the actor after the actor is asked to stop will be replied to with pykka.
ActorDeadError after it stops.

The actor may not be restarted.

block and timeout works as for ask().

Returns pykka.Future, or a boolean result if blocking

proxy()
Wraps the ActorRef in an ActorProxy .

Using this method like this:

proxy = AnActor.start().proxy()

is analogous to:

proxy = ActorProxy(AnActor.start())

Raise pykka.ActorDeadError if actor is not available

Returns pykka.ActorProxy

18 Chapter 3. Pykka API

Pykka Documentation, Release 2.0.3

3.2 Proxies

class pykka.ActorProxy(actor_ref, attr_path=None)
An ActorProxy wraps an ActorRef instance. The proxy allows the referenced actor to be used through
regular method calls and field access.

You can create an ActorProxy from any ActorRef:

actor_ref = MyActor.start()
actor_proxy = ActorProxy(actor_ref)

You can also get an ActorProxy by using proxy():

actor_proxy = MyActor.start().proxy()

Attributes and method calls

When reading an attribute or getting a return value from a method, you get a Future object back. To get the
enclosed value from the future, you must call get() on the returned future:

print(actor_proxy.string_attribute.get())
print(actor_proxy.count().get() + 1)

If you call a method just for it’s side effects and do not care about the return value, you do not need to accept the
returned future or call get() on the future. Simply call the method, and it will be executed concurrently with
your own code:

actor_proxy.method_with_side_effect()

If you want to block your own code from continuing while the other method is processing, you can use get()
to block until it completes:

actor_proxy.method_with_side_effect().get()

If you’re using Python 3.5+, you can also use the await keyword to block until the method completes:

await actor_proxy.method_with_side_effect()

If you access a proxied method as an attribute, without calling it, you get an CallableProxy .

Proxy to itself

An actor can use a proxy to itself to schedule work for itself. The scheduled work will only be done after the
current message and all messages already in the inbox are processed.

For example, if an actor can split a time consuming task into multiple parts, and after completing each part can
ask itself to start on the next part using proxied calls or messages to itself, it can react faster to other incoming
messages as they will be interleaved with the parts of the time consuming task. This is especially useful for
being able to stop the actor in the middle of a time consuming task.

To create a proxy to yourself, use the actor’s actor_ref attribute:

proxy_to_myself_in_the_future = self.actor_ref.proxy()

If you create a proxy in your actor’s constructor or on_start method, you can create a nice API for deferring
work to yourself in the future:

3.2. Proxies 19

Pykka Documentation, Release 2.0.3

def __init__(self):
...
self._in_future = self.actor_ref.proxy()
...

def do_work(self):
...
self._in_future.do_more_work()
...

def do_more_work(self):
...

To avoid infinite loops during proxy introspection, proxies to self should be kept as private instance attributes
by prefixing the attribute name with _.

Examples

An example of ActorProxy usage:

#!/usr/bin/env python3

import pykka

class Adder(pykka.ThreadingActor):
def add_one(self, i):

print(f'{self} is increasing {i}')
return i + 1

class Bookkeeper(pykka.ThreadingActor):
def __init__(self, adder):

super().__init__()
self.adder = adder

def count_to(self, target):
i = 0
while i < target:

i = self.adder.add_one(i).get()
print(f'{self} got {i} back')

if __name__ == '__main__':
adder = Adder.start().proxy()
bookkeeper = Bookkeeper.start(adder).proxy()
bookkeeper.count_to(10).get()
pykka.ActorRegistry.stop_all()

Parameters actor_ref (pykka.ActorRef) – reference to the actor to proxy

Raise pykka.ActorDeadError if actor is not available

actor_ref = None
The actor’s pykka.ActorRef instance.

class pykka.CallableProxy(actor_ref, attr_path)
Proxy to a single method.

20 Chapter 3. Pykka API

Pykka Documentation, Release 2.0.3

CallableProxy instances are returned when accessing methods on a ActorProxy without calling them.

Example:

proxy = AnActor.start().proxy()

Ask semantics returns a future. See `__call__()` docs.
future = proxy.do_work()

Tell semantics are fire and forget. See `defer()` docs.
proxy.do_work.defer()

__call__(*args, **kwargs)
Call with ask() semantics.

Returns a future which will yield the called method’s return value.

If the call raises an exception is set on the future, and will be reraised by get(). If the future is left
unused, the exception will not be reraised. Either way, the exception will also be logged. See Logging for
details.

defer(*args, **kwargs)
Call with tell() semantics.

Does not create or return a future.

If the call raises an exception, there is no future to set the exception on. Thus, the actor’s on_failure()
hook is called instead.

New in version 2.0.

pykka.traversable(obj)
Marks an actor attribute as traversable.

The traversable marker makes the actor attribute’s own methods and attributes available to users of the actor
through an ActorProxy .

Used as a function to mark a single attribute:

class AnActor(pykka.ThreadingActor):
playback = pykka.traversable(Playback())

class Playback(object):
def play(self):

return True

This function can also be used as a class decorator, making all instances of the class traversable:

class AnActor(pykka.ThreadingActor):
playback = Playback()

@pykka.traversable
class Playback(object):

def play(self):
return True

The third alternative, and the only way in Pykka < 2.0, is to manually mark a class as traversable by setting the
pykka_traversable attribute to True:

class AnActor(pykka.ThreadingActor):
playback = Playback()

(continues on next page)

3.2. Proxies 21

Pykka Documentation, Release 2.0.3

(continued from previous page)

class Playback(object):
pykka_traversable = True

def play(self):
return True

When the attribute is marked as traversable, its methods can be executed in the context of the actor through an
actor proxy:

proxy = AnActor.start().proxy()
assert proxy.playback.play().get() is True

New in version 2.0.

3.3 Futures

class pykka.Future
A Future is a handle to a value which is available or will be available in the future.

Typically returned by calls to actor methods or accesses to actor fields.

To get hold of the encapsulated value, call Future.get() or, if using Python 3.5+, await the future.

get(timeout=None)
Get the value encapsulated by the future.

If the encapsulated value is an exception, it is raised instead of returned.

If timeout is None, as default, the method will block until it gets a reply, potentially forever. If
timeout is an integer or float, the method will wait for a reply for timeout seconds, and then raise
pykka.Timeout.

The encapsulated value can be retrieved multiple times. The future will only block the first time the value
is accessed.

Parameters timeout (float or None) – seconds to wait before timeout

Raise pykka.Timeout if timeout is reached

Raise encapsulated value if it is an exception

Returns encapsulated value if it is not an exception

set(value=None)
Set the encapsulated value.

Parameters value (any object or None) – the encapsulated value or nothing

Raise an exception if set is called multiple times

set_exception(exc_info=None)
Set an exception as the encapsulated value.

You can pass an exc_info three-tuple, as returned by sys.exc_info(). If you don’t pass
exc_info, sys.exc_info() will be called and the value returned by it used.

In other words, if you’re calling set_exception(), without any arguments, from an except block, the
exception you’re currently handling will automatically be set on the future.

22 Chapter 3. Pykka API

https://docs.python.org/3/library/sys.html#sys.exc_info
https://docs.python.org/3/library/sys.html#sys.exc_info

Pykka Documentation, Release 2.0.3

Parameters exc_info (three-tuple of (exc_class, exc_instance,
traceback)) – the encapsulated exception

set_get_hook(func)
Set a function to be executed when get() is called.

The function will be called when get() is called, with the timeout value as the only argument. The
function’s return value will be returned from get().

New in version 1.2.

Parameters func (function accepting a timeout value) – called to produce re-
turn value of get()

filter(func)
Return a new future with only the items passing the predicate function.

If the future’s value is an iterable, filter() will return a new future whose value is another iterable with
only the items from the first iterable for which func(item) is true. If the future’s value isn’t an iterable,
a TypeError will be raised when get() is called.

Example:

>>> import pykka
>>> f = pykka.ThreadingFuture()
>>> g = f.filter(lambda x: x > 10)
>>> g
<pykka.future.ThreadingFuture at ...>
>>> f.set(range(5, 15))
>>> f.get()
[5, 6, 7, 8, 9, 10, 11, 12, 13, 14]
>>> g.get()
[11, 12, 13, 14]

New in version 1.2.

join(*futures)
Return a new future with a list of the result of multiple futures.

One or more futures can be passed as arguments to join(). The new future returns a list with the results
from all the joined futures.

Example:

>>> import pykka
>>> a = pykka.ThreadingFuture()
>>> b = pykka.ThreadingFuture()
>>> c = pykka.ThreadingFuture()
>>> f = a.join(b, c)
>>> a.set('def')
>>> b.set(123)
>>> c.set(False)
>>> f.get()
['def', 123, False]

New in version 1.2.

map(func)
Return a new future with the result of the future passed through a function.

Example:

3.3. Futures 23

https://docs.python.org/3/library/exceptions.html#TypeError

Pykka Documentation, Release 2.0.3

>>> import pykka
>>> f = pykka.ThreadingFuture()
>>> g = f.map(lambda x: x + 10)
>>> f.set(30)
>>> g.get()
40

>>> f = pykka.ThreadingFuture()
>>> g = f.map(lambda x: x['foo'])
>>> f.set({'foo': 'bar'}})
>>> g.get()
'bar'

New in version 1.2.

Changed in version 2.0: Previously, if the future’s result was an iterable (except a string), the function
was applied to each item in the iterable. This behavior is unpredictable and makes regular use cases like
extracting a single field from a dict difficult, thus the behavior has been simplified. Now, the entire result
value is passed to the function.

reduce(func[, initial])
Return a new future with the result of reducing the future’s iterable into a single value.

The function of two arguments is applied cumulatively to the items of the iterable, from left to right. The
result of the first function call is used as the first argument to the second function call, and so on, until the
end of the iterable. If the future’s value isn’t an iterable, a TypeError is raised.

reduce() accepts an optional second argument, which will be used as an initial value in the first function
call. If the iterable is empty, the initial value is returned.

Example:

>>> import pykka
>>> f = pykka.ThreadingFuture()
>>> g = f.reduce(lambda x, y: x + y)
>>> f.set(['a', 'b', 'c'])
>>> g.get()
'abc'

>>> f = pykka.ThreadingFuture()
>>> g = f.reduce(lambda x, y: x + y)
>>> f.set([1, 2, 3])
>>> (1 + 2) + 3
6
>>> g.get()
6

>>> f = pykka.ThreadingFuture()
>>> g = f.reduce(lambda x, y: x + y, 5)
>>> f.set([1, 2, 3])
>>> ((5 + 1) + 2) + 3
11
>>> g.get()
11

>>> f = pykka.ThreadingFuture()
>>> g = f.reduce(lambda x, y: x + y, 5)
>>> f.set([])

(continues on next page)

24 Chapter 3. Pykka API

https://docs.python.org/3/library/exceptions.html#TypeError

Pykka Documentation, Release 2.0.3

(continued from previous page)

>>> g.get()
5

New in version 1.2.

pykka.get_all(futures, timeout=None)
Collect all values encapsulated in the list of futures.

If timeout is not None, the method will wait for a reply for timeout seconds, and then raise pykka.
Timeout.

Parameters

• futures (list of pykka.Future) – futures for the results to collect

• timeout (float or None) – seconds to wait before timeout

Raise pykka.Timeout if timeout is reached

Returns list of results

3.4 Registry

class pykka.ActorRegistry
Registry which provides easy access to all running actors.

Contains global state, but should be thread-safe.

classmethod broadcast(message, target_class=None)
Broadcast message to all actors of the specified target_class.

If no target_class is specified, the message is broadcasted to all actors.

Parameters

• message (any) – the message to send

• target_class (class or class name) – optional actor class to broadcast the
message to

classmethod get_all()
Get ActorRef for all running actors.

Returns list of pykka.ActorRef

classmethod get_by_class(actor_class)
Get ActorRef for all running actors of the given class, or of any subclass of the given class.

Parameters actor_class (class) – actor class, or any superclass of the actor

Returns list of pykka.ActorRef

classmethod get_by_class_name(actor_class_name)
Get ActorRef for all running actors of the given class name.

Parameters actor_class_name (string) – actor class name

Returns list of pykka.ActorRef

classmethod get_by_urn(actor_urn)
Get an actor by its universally unique URN.

Parameters actor_urn (string) – actor URN

3.4. Registry 25

Pykka Documentation, Release 2.0.3

Returns pykka.ActorRef or None if not found

classmethod register(actor_ref)
Register an ActorRef in the registry.

This is done automatically when an actor is started, e.g. by calling Actor.start().

Parameters actor_ref (pykka.ActorRef) – reference to the actor to register

classmethod stop_all(block=True, timeout=None)
Stop all running actors.

block and timeout works as for ActorRef.stop().

If block is True, the actors are guaranteed to be stopped in the reverse of the order they were started in.
This is helpful if you have simple dependencies in between your actors, where it is sufficient to shut down
actors in a LIFO manner: last started, first stopped.

If you have more complex dependencies in between your actors, you should take care to shut them down
in the required order yourself, e.g. by stopping dependees from a dependency’s on_stop() method.

Returns If not blocking, a list with a future for each stop action. If blocking, a list of return
values from pykka.ActorRef.stop().

classmethod unregister(actor_ref)
Remove an ActorRef from the registry.

This is done automatically when an actor is stopped, e.g. by calling Actor.stop().

Parameters actor_ref (pykka.ActorRef) – reference to the actor to unregister

3.5 Exceptions

exception pykka.ActorDeadError
Exception raised when trying to use a dead or unavailable actor.

exception pykka.Timeout
Exception raised at future timeout.

3.6 Messages

The pykka.messages module contains Pykka’s own actor messages.

In general, you should not need to use any of these classes. However, they have been made part of the public API so
that certain optimizations can be done without touching Pykka’s internals.

An example is to combine ask() and ProxyCall to call a method on an actor without having to spend any resources
on creating a proxy object:

reply = actor_ref.ask(
ProxyCall(

attr_path=['my_method'],
args=['foo'],
kwargs={'bar': 'baz'}

)
)

26 Chapter 3. Pykka API

Pykka Documentation, Release 2.0.3

Another example is to use tell() instead of ask() for the proxy method call, and thus avoid the creation of a
future for the return value if you don’t need it.

It should be noted that these optimizations should only be necessary in very special circumstances.

New in version 2.0.

class pykka.messages.ProxyCall(attr_path, args, kwargs)

args
Alias for field number 1

attr_path
Alias for field number 0

kwargs
Alias for field number 2

class pykka.messages.ProxyGetAttr(attr_path)

attr_path
Alias for field number 0

class pykka.messages.ProxySetAttr(attr_path, value)

attr_path
Alias for field number 0

value
Alias for field number 1

3.7 Logging

Pykka uses Python’s standard logging module for logging debug messages and any unhandled exceptions in the
actors. All log messages emitted by Pykka are issued to the logger named pykka, or a sub-logger of it.

3.7.1 Log levels

Pykka logs at several different log levels, so that you can filter out the parts you’re not interested in:

CRITICAL (highest) This level is only used by the debug helpers in pykka.debug.

ERROR Exceptions raised by an actor that are not captured into a reply future are logged at this level.

WARNING Unhandled messages and other potential programming errors are logged at this level.

INFO Exceptions raised by an actor that are captured into a reply future are logged at this level. If the future result is
used elsewhere, the exceptions is reraised there too. If the future result isn’t used, the log message is the only
trace of the exception happening.

To catch bugs earlier, it is recommended to show log messages this level during development.

DEBUG (lowest) Every time an actor is started or stopped, and registered or unregistered in the actor registry, a
message is logged at this level.

In summary, you probably want to always let log messages at WARNING and higher through, while INFO should also
be kept on during development.

3.7. Logging 27

https://docs.python.org/3/library/logging.html#module-logging

Pykka Documentation, Release 2.0.3

3.7.2 Log handlers

Out of the box, Pykka is set up with logging.NullHandler as the only log record handler. This is the recom-
mended approach for logging in libraries, so that the application developer using the library will have full control over
how the log messages from the library will be exposed to the application’s users.

In other words, if you want to see the log messages from Pykka anywhere, you need to add a useful handler to the root
logger or the logger named pykka to get any log output from Pykka.

The defaults provided by logging.basicConfig() is enough to get debug log messages from Pykka:

import logging
logging.basicConfig(level=logging.DEBUG)

3.7.3 Recommended setup

If your application is already using logging, and you want debug log output from your own application, but not
from Pykka, you can ignore debug log messages from Pykka by increasing the threshold on the Pykka logger to INFO
level or higher:

import logging
logging.basicConfig(level=logging.DEBUG)
logging.getLogger('pykka').setLevel(logging.INFO)

Given that you’ve fixed all unhandled exceptions logged at the INFO level during development, you probably want to
disable logging from Pykka at the INFO level in production to avoid logging exceptions that are properly handled:

import logging
logging.basicConfig(level=logging.DEBUG)
logging.getLogger('pykka').setLevel(logging.WARNING)

For more details on how to use logging, please refer to the Python standard library documentation.

3.8 Debug helpers

pykka.debug.log_thread_tracebacks(*args, **kwargs)
Logs at logging.CRITICAL level a traceback for each running thread.

This can be a convenient tool for debugging deadlocks.

The function accepts any arguments so that it can easily be used as e.g. a signal handler, but it does not use the
arguments for anything.

To use this function as a signal handler, setup logging with a logging.CRITICAL threshold or lower and
make your main thread register this with the signal module:

import logging
import signal

import pykka.debug

logging.basicConfig(level=logging.DEBUG)
signal.signal(signal.SIGUSR1, pykka.debug.log_thread_tracebacks)

If your application deadlocks, send the SIGUSR1 signal to the process:

28 Chapter 3. Pykka API

https://docs.python.org/3/library/logging.handlers.html#logging.NullHandler
https://docs.python.org/3/library/logging.html#logging.basicConfig
https://docs.python.org/3/library/logging.html#module-logging
https://docs.python.org/3/library/logging.html#module-logging
https://docs.python.org/3/library/signal.html#module-signal

Pykka Documentation, Release 2.0.3

kill -SIGUSR1 <pid of your process>

Signal handler caveats:

• The function must be registered as a signal handler by your main thread. If not, signal.signal() will
raise a ValueError.

• All signals in Python are handled by the main thread. Thus, the signal will only be handled, and the
tracebacks logged, if your main thread is available to do some work. Making your main thread idle using
time.sleep() is OK. The signal will awaken your main thread. Blocking your main thread on e.g.
queue.Queue.get() or pykka.Future.get() will break signal handling, and thus you won’t be
able to signal your process to print the thread tracebacks.

The morale is: setup signals using your main thread, start your actors, then let your main thread relax for the
rest of your application’s life cycle.

New in version 1.1.

3.8.1 Deadlock debugging

This is a complete example of how to use log_thread_tracebacks() to debug deadlocks:

#!/usr/bin/env python3

import logging
import os
import signal
import time

import pykka
import pykka.debug

class DeadlockActorA(pykka.ThreadingActor):
def foo(self, b):

logging.debug('This is foo calling bar')
return b.bar().get()

class DeadlockActorB(pykka.ThreadingActor):
def __init__(self, a):

super().__init__()
self.a = a

def bar(self):
logging.debug('This is bar calling foo; BOOM!')
return self.a.foo().get()

if __name__ == '__main__':
print('Setting up logging to get output from signal handler...')
logging.basicConfig(level=logging.DEBUG)

print('Registering signal handler...')
signal.signal(signal.SIGUSR1, pykka.debug.log_thread_tracebacks)

print('Starting actors...')

(continues on next page)

3.8. Debug helpers 29

https://docs.python.org/3/library/signal.html#signal.signal
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/time.html#time.sleep

Pykka Documentation, Release 2.0.3

(continued from previous page)

a = DeadlockActorA.start().proxy()
b = DeadlockActorB.start(a).proxy()

print('Now doing something stupid that will deadlock the actors...')
a.foo(b)

time.sleep(0.01) # Yield to actors, so we get output in a readable order

pid = os.getpid()
print('Making main thread relax; not block, not quit')
print('1) Use `kill -SIGUSR1 {:d}` to log thread tracebacks'.format(pid))
print('2) Then `kill {:d}` to terminate the process'.format(pid))
while True:

time.sleep(1)

Running the script outputs the following:

Setting up logging to get output from signal handler...
Registering signal handler...
Starting actors...
DEBUG:pykka:Registered DeadlockActorA (urn:uuid:60803d09-cf5a-46cc-afdc-0c813e2e6647)
DEBUG:pykka:Starting DeadlockActorA (urn:uuid:60803d09-cf5a-46cc-afdc-0c813e2e6647)
DEBUG:pykka:Registered DeadlockActorB (urn:uuid:626adc83-ae35-439c-866a-85a3e29fd42c)
DEBUG:pykka:Starting DeadlockActorB (urn:uuid:626adc83-ae35-439c-866a-85a3e29fd42c)
Now doing something stupid that will deadlock the actors...
DEBUG:root:This is foo calling bar
DEBUG:root:This is bar calling foo; BOOM!
Making main thread relax; not block, not quit
1) Use `kill -SIGUSR1 2284` to log thread tracebacks
2) Then `kill 2284` to terminate the process

The two actors are now deadlocked waiting for each other while the main thread is idling, ready to process any signals.

To debug the deadlock, send the SIGUSR1 signal to the process, which has PID 2284 in this example:

kill -SIGUSR1 2284

This makes the main thread log the current traceback for each thread. The logging output shows that the two actors
are both waiting for data from the other actor:

CRITICAL:pykka:Current state of DeadlockActorB-2 (ident: 140151493752576):
File "/usr/lib/python3.6/threading.py", line 884, in _bootstrap

self._bootstrap_inner()
File "/usr/lib/python3.6/threading.py", line 916, in _bootstrap_inner

self.run()
File "/usr/lib/python3.6/threading.py", line 864, in run

self._target(*self._args, **self._kwargs)
File ".../pykka/actor.py", line 195, in _actor_loop

response = self._handle_receive(message)
File ".../pykka/actor.py", line 297, in _handle_receive

return callee(*message['args'], **message['kwargs'])
File "examples/deadlock_debugging.py", line 25, in bar

return self.a.foo().get()
File ".../pykka/threading.py", line 47, in get

self._data = self._queue.get(True, timeout)
File "/usr/lib/python3.6/queue.py", line 164, in get

self.not_empty.wait()

(continues on next page)

30 Chapter 3. Pykka API

Pykka Documentation, Release 2.0.3

(continued from previous page)

File "/usr/lib/python3.6/threading.py", line 295, in wait
waiter.acquire()

CRITICAL:pykka:Current state of DeadlockActorA-1 (ident: 140151572883200):
File "/usr/lib/python3.6/threading.py", line 884, in _bootstrap

self._bootstrap_inner()
File "/usr/lib/python3.6/threading.py", line 916, in _bootstrap_inner

self.run()
File "/usr/lib/python3.6/threading.py", line 864, in run

self._target(*self._args, **self._kwargs)
File ".../pykka/actor.py", line 195, in _actor_loop

response = self._handle_receive(message)
File ".../pykka/actor.py", line 297, in _handle_receive

return callee(*message['args'], **message['kwargs'])
File "examples/deadlock_debugging.py", line 15, in foo

return b.bar().get()
File ".../pykka/threading.py", line 47, in get

self._data = self._queue.get(True, timeout)
File "/usr/lib/python3.6/queue.py", line 164, in get

self.not_empty.wait()
File "/usr/lib/python3.6/threading.py", line 295, in wait

waiter.acquire()

CRITICAL:pykka:Current state of MainThread (ident: 140151593330496):
File ".../examples/deadlock_debugging.py", line 49, in <module>

time.sleep(1)
File ".../pykka/debug.py", line 63, in log_thread_tracebacks

stack = ''.join(traceback.format_stack(frame))

3.8. Debug helpers 31

Pykka Documentation, Release 2.0.3

32 Chapter 3. Pykka API

CHAPTER 4

Runtimes

By default, Pykka builds on top of Python’s regular threading concurrency model, via the standard library modules
threading and queue.

Alternatively, you may run Pykka on top of gevent or eventlet.

Note that Pykka does no attempt at supporting a mix of concurrency runtimes. Such a future feature has briefly been
discussed in issue #11.

4.1 Threading

4.1.1 Installation

The default threading runtime has no dependencies other than Pykka itself and the Python standard library.

4.1.2 API

class pykka.ThreadingFuture
ThreadingFuture implements Future for use with ThreadingActor.

The future is implemented using a queue.Queue.

The future does not make a copy of the object which is set() on it. It is the setters responsibility to only pass
immutable objects or make a copy of the object before setting it on the future.

Changed in version 0.14: Previously, the encapsulated value was a copy made with copy.deepcopy(),
unless the encapsulated value was a future, in which case the original future was encapsulated.

get(timeout=None)
Get the value encapsulated by the future.

If the encapsulated value is an exception, it is raised instead of returned.

33

https://docs.python.org/3/library/threading.html#module-threading
https://docs.python.org/3/library/queue.html#module-queue
https://github.com/jodal/pykka/issues/11
https://docs.python.org/3/library/queue.html#queue.Queue
https://docs.python.org/3/library/copy.html#copy.deepcopy

Pykka Documentation, Release 2.0.3

If timeout is None, as default, the method will block until it gets a reply, potentially forever. If
timeout is an integer or float, the method will wait for a reply for timeout seconds, and then raise
pykka.Timeout.

The encapsulated value can be retrieved multiple times. The future will only block the first time the value
is accessed.

Parameters timeout (float or None) – seconds to wait before timeout

Raise pykka.Timeout if timeout is reached

Raise encapsulated value if it is an exception

Returns encapsulated value if it is not an exception

set(value=None)
Set the encapsulated value.

Parameters value (any object or None) – the encapsulated value or nothing

Raise an exception if set is called multiple times

set_exception(exc_info=None)
Set an exception as the encapsulated value.

You can pass an exc_info three-tuple, as returned by sys.exc_info(). If you don’t pass
exc_info, sys.exc_info() will be called and the value returned by it used.

In other words, if you’re calling set_exception(), without any arguments, from an except block, the
exception you’re currently handling will automatically be set on the future.

Parameters exc_info (three-tuple of (exc_class, exc_instance,
traceback)) – the encapsulated exception

class pykka.ThreadingActor(*args, **kwargs)
ThreadingActor implements Actor using regular Python threads.

This implementation is slower than GeventActor, but can be used in a process with other threads that are not
Pykka actors.

use_daemon_thread = False
A boolean value indicating whether this actor is executed on a thread that is a daemon thread (True) or
not (False). This must be set before pykka.Actor.start() is called, otherwise RuntimeError
is raised.

The entire Python program exits when no alive non-daemon threads are left. This means that an actor
running on a daemon thread may be interrupted at any time, and there is no guarantee that cleanup will be
done or that pykka.Actor.on_stop() will be called.

Actors do not inherit the daemon flag from the actor that made it. It always has to be set explicitly for the
actor to run on a daemonic thread.

4.2 gevent

Deprecated since version 2.0.3.

Warning: gevent support is deprecated and will be removed in Pykka 3.0.

34 Chapter 4. Runtimes

https://docs.python.org/3/library/sys.html#sys.exc_info
https://docs.python.org/3/library/sys.html#sys.exc_info
https://docs.python.org/3/library/exceptions.html#RuntimeError

Pykka Documentation, Release 2.0.3

4.2.1 Installation

To run Pykka on top of gevent, you first need to install the gevent package from PyPI:

pip install gevent

4.2.2 Code changes

Next, all actors must subclass pykka.gevent.GeventActor instead of pykka.ThreadingActor.

If you create any futures yourself, you must replace pykka.ThreadingFuture with pykka.gevent.
GeventFuture.

With those changes in place, Pykka should run on top of gevent.

4.2.3 API

class pykka.gevent.GeventFuture(async_result=None)
GeventFuture implements pykka.Future for use with GeventActor.

It encapsulates a gevent.event.AsyncResult object which may be used directly, though it will couple
your code with gevent.

async_result = None
The encapsulated gevent.event.AsyncResult

get(timeout=None)
Get the value encapsulated by the future.

If the encapsulated value is an exception, it is raised instead of returned.

If timeout is None, as default, the method will block until it gets a reply, potentially forever. If
timeout is an integer or float, the method will wait for a reply for timeout seconds, and then raise
pykka.Timeout.

The encapsulated value can be retrieved multiple times. The future will only block the first time the value
is accessed.

Parameters timeout (float or None) – seconds to wait before timeout

Raise pykka.Timeout if timeout is reached

Raise encapsulated value if it is an exception

Returns encapsulated value if it is not an exception

set(value=None)
Set the encapsulated value.

Parameters value (any object or None) – the encapsulated value or nothing

Raise an exception if set is called multiple times

set_exception(exc_info=None)
Set an exception as the encapsulated value.

You can pass an exc_info three-tuple, as returned by sys.exc_info(). If you don’t pass
exc_info, sys.exc_info() will be called and the value returned by it used.

In other words, if you’re calling set_exception(), without any arguments, from an except block, the
exception you’re currently handling will automatically be set on the future.

4.2. gevent 35

http://www.gevent.org/
https://pypi.org/project/gevent/
https://docs.python.org/3/library/sys.html#sys.exc_info
https://docs.python.org/3/library/sys.html#sys.exc_info

Pykka Documentation, Release 2.0.3

Parameters exc_info (three-tuple of (exc_class, exc_instance,
traceback)) – the encapsulated exception

class pykka.gevent.GeventActor(*args, **kwargs)
GeventActor implements pykka.Actor using the gevent library. gevent is a coroutine-based Python
networking library that uses greenlet to provide a high-level synchronous API on top of libevent event loop.

This is a very fast implementation.

4.3 eventlet

Deprecated since version 2.0.3.

Warning: eventlet support is deprecated and will be removed in Pykka 3.0.

4.3.1 Installation

To run Pykka on top of eventlet, you first need to install the eventlet package from PyPI:

pip install eventlet

4.3.2 Code changes

Next, all actors must subclass pykka.eventlet.EventletActor instead of pykka.ThreadingActor.

If you create any futures yourself, you must replace pykka.ThreadingFuture with pykka.eventlet.
EventletFuture.

With those changes in place, Pykka should run on top of eventlet.

4.3.3 API

class pykka.eventlet.EventletEvent
EventletEvent adapts eventlet.event.Event to threading.Event interface.

class pykka.eventlet.EventletFuture
EventletFuture implements pykka.Future for use with EventletActor.

get(timeout=None)
Get the value encapsulated by the future.

If the encapsulated value is an exception, it is raised instead of returned.

If timeout is None, as default, the method will block until it gets a reply, potentially forever. If
timeout is an integer or float, the method will wait for a reply for timeout seconds, and then raise
pykka.Timeout.

The encapsulated value can be retrieved multiple times. The future will only block the first time the value
is accessed.

Parameters timeout (float or None) – seconds to wait before timeout

Raise pykka.Timeout if timeout is reached

36 Chapter 4. Runtimes

http://www.gevent.org/
https://eventlet.net/
https://pypi.org/project/eventlet/
https://docs.python.org/3/library/threading.html#threading.Event

Pykka Documentation, Release 2.0.3

Raise encapsulated value if it is an exception

Returns encapsulated value if it is not an exception

set(value=None)
Set the encapsulated value.

Parameters value (any object or None) – the encapsulated value or nothing

Raise an exception if set is called multiple times

set_exception(exc_info=None)
Set an exception as the encapsulated value.

You can pass an exc_info three-tuple, as returned by sys.exc_info(). If you don’t pass
exc_info, sys.exc_info() will be called and the value returned by it used.

In other words, if you’re calling set_exception(), without any arguments, from an except block, the
exception you’re currently handling will automatically be set on the future.

Parameters exc_info (three-tuple of (exc_class, exc_instance,
traceback)) – the encapsulated exception

class pykka.eventlet.EventletActor(*args, **kwargs)
EventletActor implements pykka.Actor using the eventlet library.

This implementation uses eventlet green threads.

4.3. eventlet 37

https://docs.python.org/3/library/sys.html#sys.exc_info
https://docs.python.org/3/library/sys.html#sys.exc_info
https://eventlet.net/

Pykka Documentation, Release 2.0.3

38 Chapter 4. Runtimes

CHAPTER 5

Testing

Pykka actors can be tested using the regular Python testing tools like pytest, unittest, and unittest.mock.

To test actors in a setting as close to production as possible, a typical pattern is the following:

1. In the test setup, start an actor together with any actors/collaborators it depends on. The dependencies will often
be replaced by mocks to control their behavior.

2. In the test, ask() or tell() the actor something.

3. In the test, assert on the actor’s state or the return value from the ask().

4. In the test teardown, stop the actor to properly clean up before the next test.

5.1 An example

Let’s look at an example actor that we want to test:

import pykka

class ProducerActor(pykka.ThreadingActor):
def __init__(self, consumer):

super(ProducerActor, self).__init__()
self.consumer = consumer

def produce(self):
new_item = {'item': 1, 'new': True}
self.consumer.consume(new_item)

We can test this actor with pytest by mocking the consumer and asserting that it receives a newly produced item:

from producer import ProducerActor

(continues on next page)

39

https://docs.pytest.org/
https://docs.python.org/3/library/unittest.html#module-unittest
https://docs.python.org/3/library/unittest.mock.html#module-unittest.mock
https://docs.pytest.org/

Pykka Documentation, Release 2.0.3

(continued from previous page)

import pytest

@pytest.fixture
def consumer_mock(mocker):

yield mocker.Mock()

@pytest.fixture
def producer(consumer_mock):

Step 1: The actor under test is wired up with
its dependencies and is started.
proxy = ProducerActor.start(consumer_mock).proxy()

yield proxy

Step 4: The actor is stopped to clean up before the next test.
proxy.stop()

def test_producer_actor(consumer_mock, producer):
Step 2: Interact with the actor.
We call .get() on the last future returned by the actor to wait
for the actor to process all messages before asserting anything.
producer.produce().get()

Step 3: Assert that the return values or actor state is as expected.
consumer_mock.consume.assert_called_once_with({'item': 1, 'new': True})

If this way of setting up and tearing down test resources is unfamiliar to you, it is strongly recommended to read up
on pytest’s great fixture feature.

40 Chapter 5. Testing

https://docs.pytest.org/en/latest/fixture.html

CHAPTER 6

Changes

6.1 v2.0.3 (2020-11-27)

• Mark eventlet and gevent support as deprecated. The support will be removed in Pykka 3.0.

These where somewhat interesting ways to implement concurrency in Python when Pykka was conceived in
2011. Today, it is unclear it these libraries still have any mindshare or if keeping the support for them just adds
an unecessary burden to Pykka’s maintenance.

• Include Python 3.9 in the test matrix. (PR: #98)

• Add missing None default value for the timeout keyword argument to wait(), so that it matches the Event
API. (PR: #91)

6.2 v2.0.2 (2019-12-02)

Bugfix release.

• Fix test suite run with pytest-mocker >= 1.11.2. (Fixes: #85)

6.3 v2.0.1 (2019-10-10)

Bugfix release.

• Make ActorRef hashable.

6.4 v2.0.0 (2019-05-07)

Major feature release.

41

https://github.com/jodal/pykka/issues/98
https://docs.python.org/3/library/threading.html#threading.Event
https://github.com/jodal/pykka/issues/91
https://github.com/jodal/pykka/issues/85

Pykka Documentation, Release 2.0.3

6.4.1 Dependencies

• Drop support for Python 2.6, 3.2, 3.3, and 3.4. All have reached their end of life and do no longer receive
security updates.

• Include CPython 3.5, 3.6, 3.7, and 3.8 pre-releases, and PyPy 3.5 in the test matrix.

• Include gevent and Eventlet tests in all environments. Since Pykka was originally developed, both has grown
support for Python 3 and PyPy.

• On Python 3, import Callable and Iterable from collections.abc instead of collections. This
fixes a deprecation warning on Python 3.7 and prepares for Python 3.8.

6.4.2 Actors

• Actor messages are no longer required to be dict objects. Any object type can be used as an actor message.
(Fixes: #39, #45, PR: #79)

For existing code, this means that on_receive() implementations should no longer assume the received
message to be a dict, and guard with the appropriate amount of isinstance() checks. As an existing
application will not observe any new message types before it starts using them itself, this is not marked as
backwards incompatible.

6.4.3 Proxies

• Backwards incompatible: Avoid accessing actor properties when creating a proxy for the actor. For proper-
ties with side effects, this is a major bug fix. For properties which does heavy work, this is a major startup
performance improvement.

This is backwards incompatible if you in a property getter returned an object instance with the
pykka_traversablemarker. Previously, this would work just like a traversable attribute. Now, the property
always returns a future with the property getter’s return value.

• Fix infinite recursion when creating a proxy for an actor with an attribute or method replaced with a Mock
without a spec defined. (Fixes: #26, #27)

• Fix infinite recursion when creating a proxy for an actor with an attribute that was itself a proxy to the same actor.
The attribute will now be ignored and a warning log message will ask you to consider making the self-proxy
private. (Fixes: #48)

• Add defer() to support method calls through a proxy with tell() semantics. (Contributed by Andrey
Gubarev. Fixes: #63. PR: #72)

• Add traversable() for marking an actor’s attributes as traversable when used through actor proxies. The
old way of manually adding a pykka_traversable attribute to the object to be traversed still works, but
the new function is recommended as it provides protection against typos in the marker name, and keeps the
traversable marking in the actor class itself. (PR: #81)

6.4.4 Futures

• Backwards incompatible: pykka.Future.set_exception() no longer accepts an exception instance,
which was deprecated in 0.15. The method can be called with either an exc_info tuple or None, in which
case it will use sys.exc_info() to get information on the current exception.

• Backwards incompatible: pykka.Future.map() on a future with an iterable result no longer applies the
map function to each item in iterable. Instead, the entire future result is passed to the map function. (Fixes: #64)

42 Chapter 6. Changes

https://docs.python.org/3/library/collections.abc.html#module-collections.abc
https://docs.python.org/3/library/collections.html#module-collections
https://github.com/jodal/pykka/issues/39
https://github.com/jodal/pykka/issues/45
https://github.com/jodal/pykka/issues/79
https://docs.python.org/3/library/functions.html#isinstance
https://docs.python.org/3/library/unittest.mock.html#unittest.mock.Mock
https://github.com/jodal/pykka/issues/26
https://github.com/jodal/pykka/issues/27
https://github.com/jodal/pykka/issues/48
https://github.com/jodal/pykka/issues/63
https://github.com/jodal/pykka/issues/72
https://github.com/jodal/pykka/issues/81
https://docs.python.org/3/library/sys.html#sys.exc_info
https://github.com/jodal/pykka/issues/64

Pykka Documentation, Release 2.0.3

To upgrade existing code, make sure to explicitly apply the core of your map function to each item in the iterable:

>>> f = pykka.ThreadingFuture()
>>> f.set([1, 2, 3])
>>> f.map(lambda x: x + 1).get() # Pykka < 2.0
[2, 3, 4]
>>> f.map(lambda x: [i + 1 for i in x]).get() # Pykka >= 2.0
[2, 3, 4]

This change makes it easy to use map() to extract a field from a future that returns a dict:

>>> f = pykka.ThreadingFuture()
>>> f.set({'foo': 'bar'})
>>> f.map(lambda x: x['foo']).get()
'bar'

Because dict is an iterable, the now removed special handling of iterables made this pattern difficult to use.

• Reuse result from pykka.Future.filter(), pykka.Future.map(), and pykka.Future.
reduce(). Recalculating the result on each call to pykka.Future.get() is both inconsistent with regular
futures and can cause problems if the function is expensive or has side effects. (Fixes: #32)

• If using Python 3.5+, one can now use the await keyword to get the result from a future. (Contributed by
Joshua Doncaster-Marsiglio. PR: #78)

6.4.5 Logging

• Pykka’s use of different log levels has been documented.

• Exceptions raised by an actor that are captured into a reply future are now logged on the INFO level instead of
the DEBUG level. This makes it possible to detect potentially unhandled exceptions during development without
having to turn on debug logging, which can have a low signal to noise ratio. (Contributed by Stefan Möhl. Fixes:
#73)

6.4.6 Gevent support

• Ensure that the original traceback is preserved when an exception is returned through a future from a Gevent
actor. (Contributed by Arne Brutschy. Fixes: #74, PR: #75)

6.4.7 Internals

• Backwards incompatible: Prefix all internal modules with _. This is backwards incompatible if you have
imported objects from other import paths than what is used in the documentation.

• Port tests to pytest.

• Format code with Black.

• Change internal messaging format from dict to namedtuple. (PR: #80)

6.5 v1.2.1 (2015-07-20)

• Increase log level of pykka.debug.log_thread_tracebacks() debugging helper from logging.
INFO to logging.CRITICAL.

6.5. v1.2.1 (2015-07-20) 43

https://github.com/jodal/pykka/issues/32
https://github.com/jodal/pykka/issues/78
https://github.com/jodal/pykka/issues/73
https://github.com/jodal/pykka/issues/74
https://github.com/jodal/pykka/issues/75
https://github.com/jodal/pykka/issues/80

Pykka Documentation, Release 2.0.3

• Fix errors in docs examples. (PR: #29, #43)

• Fix typos in docs.

• Various project setup and development improvements.

6.6 v1.2.0 (2013-07-15)

• Enforce that multiple calls to pykka.Future.set() raises an exception. This was already the case for some
implementations. The exception raised is not specified.

• Add pykka.Future.set_get_hook().

• Add filter(), join(), map(), and reduce() as convenience methods using the new
set_get_hook() method.

• Add support for running actors based on eventlet greenlets. See pykka.eventlet for details. Thanks to
Jakub Stasiak for the implementation.

• Update documentation to reflect that the reply_to field on the message is private to Pykka. Actors should
reply to messages simply by returning the response from on_receive(). The internal field is renamed to
pykka_reply_to a to avoid collisions with other message fields. It is also removed from the message before
the message is passed to on_receive(). Thanks to Jakub Stasiak.

• When messages are left in the actor inbox after the actor is stopped, those messages that are expecting a reply
is now rejected by replying with an ActorDeadError exception. This causes other actors blocking on the
returned Future without a timeout to raise the exception instead of waiting forever. Thanks to Jakub Stasiak.

This makes the behavior of messaging an actor around the time it is stopped more consistent:

– Messaging an already dead actor immediately raises ActorDeadError.

– Messaging an alive actor that is stopped before it processes the message will cause the reply future to raise
ActorDeadError.

Similarly, if you ask an actor to stop multiple times, and block on the responses, all the messages will now get
an reply. Previously only the first message got a reply, potentially making the application wait forever on replies
to the subsequent stop messages.

• When ask() is used to asynchronously message a dead actor (e.g. block set to False), it will no
longer immediately raise ActorDeadError. Instead, it will return a future and fail the future with the
ActorDeadError exception. This makes the interface more consistent, as you’ll have one instead of two
ways the call can raise exceptions under normal conditions. If ask() is called synchronously (e.g. block set
to True), the behavior is unchanged.

• A change to stop() reduces the likelyhood of a race condition when asking an actor to stop multiple times by
not checking if the actor is dead before asking it to stop, but instead just go ahead and leave it to tell() to do
the alive-or-dead check a single time, and as late as possible.

• Change is_alive() to check the actor’s runnable flag instead of checking if the actor is registered in the
actor registry.

6.7 v1.1.0 (2013-01-19)

• An exception raised in pykka.Actor.on_start() didn’t stop the actor properly. Thanks to Jay Camp for
finding and fixing the bug.

• Make sure exceptions in pykka.Actor.on_stop() and pykka.Actor.on_failure() is logged.

44 Chapter 6. Changes

https://github.com/jodal/pykka/issues/29
https://github.com/jodal/pykka/issues/43

Pykka Documentation, Release 2.0.3

• Add pykka.ThreadingActor.use_daemon_thread flag for optionally running an actor on a daemon
thread, so that it doesn’t block the Python program from exiting. (Fixes: #14)

• Add pykka.debug.log_thread_tracebacks() debugging helper. (Fixes: #17)

6.8 v1.0.1 (2012-12-12)

• Name the threads of pykka.ThreadingActor after the actor class name instead of “PykkaThreadingActor-
N” to ease debugging. (Fixes: #12)

6.9 v1.0.0 (2012-10-26)

• Backwards incompatible: Removed pykka.VERSION and pykka.get_version(), which have been
deprecated since v0.14. Use pykka.__version__ instead.

• Backwards incompatible: Removed pykka.ActorRef.send_one_way() and pykka.ActorRef.
send_request_reply(), which have been deprecated since v0.14. Use pykka.ActorRef.tell()
and pykka.ActorRef.ask() instead.

• Backwards incompatible: Actors no longer subclass threading.Thread or gevent.Greenlet. In-
stead they have a thread or greenlet that executes the actor’s main loop.

This is backwards incompatible because you no longer have access to fields/methods of the thread/greenlet that
runs the actor through fields/methods on the actor itself. This was never advertised in Pykka’s docs or examples,
but the fields/methods have always been available.

As a positive side effect, this fixes an issue on Python 3.x, that was introduced in Pykka 0.16, where pykka.
ThreadingActor would accidentally override the method threading.Thread._stop().

• Backwards incompatible: Actors that override __init__() must call the method they override. If not, the
actor will no longer be properly initialized. Valid ways to call the overridden __init__() method include:

super().__init__()
or
pykka.ThreadingActor.__init__()
or
pykka.gevent.GeventActor.__init__()

• Make pykka.Actor.__init__() accept any arguments and keyword arguments by default. This allows
you to use super() in __init__() like this:

super().__init__(1, 2, 3, foo='bar')

Without this fix, the above use of super() would cause an exception because the default implementation of
__init__() in pykka.Actor would not accept the arguments.

• Allow all public classes and functions to be imported directly from the pykka module. E.g.
from pykka.actor import ThreadingActor can now be written as from pykka import
ThreadingActor. The exception is pykka.gevent, which still needs to be imported from its own package
due to its additional dependency on gevent.

6.8. v1.0.1 (2012-12-12) 45

https://github.com/jodal/pykka/issues/14
https://github.com/jodal/pykka/issues/17
https://github.com/jodal/pykka/issues/12
https://docs.python.org/3/library/threading.html#threading.Thread

Pykka Documentation, Release 2.0.3

6.10 v0.16 (2012-09-19)

• Let actors access themselves through a proxy. See the pykka.ActorProxy documentation for use cases and
usage examples. (Fixes: #9)

• Give proxies direct access to the actor instances for inspecting available attributes. This access is only used for
reading, and works since both threading and gevent based actors share memory with other actors. This reduces
the creation cost for proxies, which is mostly visible in test suites that are starting and stopping lots of actors. For
the Mopidy test suite the run time was reduced by about 33%. This change also makes self-proxying possible.

• Fix bug where pykka.Actor.stop() called by an actor on itself did not process the remaining messages in
the inbox before the actor stopped. The behavior now matches the documentation.

6.11 v0.15 (2012-08-11)

• Change the argument of pykka.Future.set_exception() from an exception instance to a exc_info
three-tuple. Passing just an exception instance to the method still works, but it is deprecated and may be
unsupported in a future release.

• Due to the above change, pykka.Future.get() will now reraise exceptions with complete traceback from
the point when the exception was first raised, and not just a traceback from when it was reraised by get().
(Fixes: #10)

6.12 v0.14 (2012-04-22)

• Add pykka.__version__ to conform with PEP 396. This deprecates pykka.VERSION and pykka.
get_version().

• Add pykka.ActorRef.tell() method in favor of now deprecated pykka.ActorRef.
send_one_way().

• Add pykka.ActorRef.ask() method in favor of now deprecated pykka.ActorRef.
send_request_reply().

• ThreadingFuture.set() no longer makes a copy of the object set on the future. The setter is urged to
either only pass immutable objects through futures or copy the object himself before setting it on the future. This
is a less safe default, but it removes unecessary overhead in speed and memory usage for users of immutable
data structures. For example, the Mopidy test suite of about 1000 tests, many which are using Pykka, is still
passing after this change, but the test suite runs approximately 20% faster.

6.13 v0.13 (2011-09-24)

• 10x speedup of traversable attribute access by reusing proxies.

• 1.1x speedup of callable attribute access by reusing proxies.

6.14 v0.12.4 (2011-07-30)

• Change and document order in which pykka.ActorRegistry.stop_all() stops actors. The new order
is the reverse of the order the actors were started in. This should make stop_all work for programs with

46 Chapter 6. Changes

https://github.com/jodal/pykka/issues/9
https://github.com/jodal/pykka/issues/10
https://www.python.org/dev/peps/pep-0396

Pykka Documentation, Release 2.0.3

simple dependency graphs in between the actors. For applications with more complex dependency graphs, the
developer still needs to pay attention to the shutdown sequence. (Fixes: #8)

6.15 v0.12.3 (2011-06-25)

• If an actor that was stopped from pykka.Actor.on_start(), it would unregister properly, but start the
receive loop and forever block on receiving incoming messages that would never arrive. This left the thread
alive and isolated, ultimately blocking clean shutdown of the program. The fix ensures that the receive loop is
never executed if the actor is stopped before the receive loop is started.

• Set the thread name of any pykka.ThreadingActor to PykkaActorThread-N instead of the default
Thread-N. This eases debugging by clearly labeling actor threads in e.g. the output of threading.
enumerate().

• Add utility method pykka.ActorRegistry.broadcast() which broadcasts a message to all registered
actors or to a given class of registred actors. (Fixes: #7)

• Allow multiple calls to pykka.ActorRegistry.unregister() with the same pykka.actor.
ActorRef as argument without throwing a ValueError. (Fixes: #5)

• Make the pykka.ActorProxy’s reference to its pykka.ActorRef public as pykka.ActorProxy.
actor_ref. The ActorRef instance was already exposed as a public field by the actor itself using the
same name, but making it public directly on the proxy makes it possible to do e.g. proxy.actor_ref.
is_alive() without waiting for a potentially dead actor to return an ActorRef instance you can use.
(Fixes: #3)

6.16 v0.12.2 (2011-05-05)

• Actors are now registered in pykka.registry.ActorRegistry before they are started. This fixes a race
condition where an actor tried to stop and unregister itself before it was registered, causing an exception in
ActorRegistry.unregister().

6.17 v0.12.1 (2011-04-25)

• Stop all running actors on BaseException instead of just KeyboardInterrupt, so that sys.exit(1)
will work.

6.18 v0.12 (2011-03-30)

• First stable release, as Pykka now is used by the Mopidy project. From now on, a changelog will be maintained
and we will strive for backwards compatibility.

6.15. v0.12.3 (2011-06-25) 47

https://github.com/jodal/pykka/issues/8
https://docs.python.org/3/library/threading.html#threading.enumerate
https://docs.python.org/3/library/threading.html#threading.enumerate
https://github.com/jodal/pykka/issues/7
https://docs.python.org/3/library/exceptions.html#ValueError
https://github.com/jodal/pykka/issues/5
https://github.com/jodal/pykka/issues/3
https://docs.python.org/3/library/exceptions.html#BaseException
https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt
https://www.mopidy.com/

Pykka Documentation, Release 2.0.3

48 Chapter 6. Changes

CHAPTER 7

Inspiration

Much of the naming of concepts and methods in Pykka is taken from the Akka project which implements actors on
the JVM. Though, Pykka does not aim to be a Python port of Akka, and supports far fewer features.

7.1 What Pykka is not

Notably, Pykka does not support the following features:

• Supervision: Linking actors, supervisors, or supervisor groups.

• Remoting: Communicating with actors running on other hosts.

• Routers: Pykka does not come with a set of predefined message routers, though you may make your own actors
for routing messages.

49

https://akka.io/

Pykka Documentation, Release 2.0.3

50 Chapter 7. Inspiration

CHAPTER 8

Authors

Pykka is copyright 2010-2020 Stein Magnus Jodal and contributors. Pykka is licensed under the Apache License,
Version 2.0.

The following persons have contributed to Pykka. The list is in the order of first contribution. For details on who have
contributed what, please refer to our Git repository.

• Stein Magnus Jodal <stein.magnus@jodal.no>

• Jay Camp <jay.r.camp@gmail.com>

• Benjamin Schwarze <benjamin.schwarze@mailboxd.de>

• Jakub Stasiak <jakub@stasiak.at>

• Yongzhi Pan <panyongzhi@gmail.com>

• Chris Martin <ch.martin@gmail.com>

• Mike Goodspeed <mikegoodspeed@gmail.com>

• Thomas Amland <thomas.amland@gmail.com>

• Sean Robinson <robinson@tuxfamily.org>

• Joshua Doncaster-Marsiglio <josh.doncastermarsiglio@tophatmonocle.com>

51

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
mailto:stein.magnus@jodal.no
mailto:jay.r.camp@gmail.com
mailto:benjamin.schwarze@mailboxd.de
mailto:jakub@stasiak.at
mailto:panyongzhi@gmail.com
mailto:ch.martin@gmail.com
mailto:mikegoodspeed@gmail.com
mailto:thomas.amland@gmail.com
mailto:robinson@tuxfamily.org
mailto:josh.doncastermarsiglio@tophatmonocle.com

Pykka Documentation, Release 2.0.3

52 Chapter 8. Authors

Python Module Index

d
pykka.debug, 28

e
pykka.eventlet, 36

g
pykka.gevent, 35

m
pykka.messages, 26

p
pykka, 15

53

Pykka Documentation, Release 2.0.3

54 Python Module Index

Index

Symbols
__call__() (pykka.CallableProxy method), 21
__version__ (in module pykka), 15

A
Actor (class in pykka), 15
actor_class (pykka.ActorRef attribute), 17
actor_inbox (pykka.Actor attribute), 16
actor_inbox (pykka.ActorRef attribute), 17
actor_ref (pykka.Actor attribute), 16
actor_ref (pykka.ActorProxy attribute), 20
actor_stopped (pykka.Actor attribute), 16
actor_stopped (pykka.ActorRef attribute), 17
actor_urn (pykka.Actor attribute), 16
actor_urn (pykka.ActorRef attribute), 17
ActorDeadError, 26
ActorProxy (class in pykka), 19
ActorRef (class in pykka), 17
ActorRegistry (class in pykka), 25
args (pykka.messages.ProxyCall attribute), 27
ask() (pykka.ActorRef method), 18
async_result (pykka.gevent.GeventFuture attribute),

35
attr_path (pykka.messages.ProxyCall attribute), 27
attr_path (pykka.messages.ProxyGetAttr attribute),

27
attr_path (pykka.messages.ProxySetAttr attribute),

27

B
broadcast() (pykka.ActorRegistry class method), 25

C
CallableProxy (class in pykka), 20

D
defer() (pykka.CallableProxy method), 21

E
EventletActor (class in pykka.eventlet), 37

EventletEvent (class in pykka.eventlet), 36
EventletFuture (class in pykka.eventlet), 36

F
filter() (pykka.Future method), 23
Future (class in pykka), 22

G
get() (pykka.eventlet.EventletFuture method), 36
get() (pykka.Future method), 22
get() (pykka.gevent.GeventFuture method), 35
get() (pykka.ThreadingFuture method), 33
get_all() (in module pykka), 25
get_all() (pykka.ActorRegistry class method), 25
get_by_class() (pykka.ActorRegistry class method),

25
get_by_class_name() (pykka.ActorRegistry class

method), 25
get_by_urn() (pykka.ActorRegistry class method), 25
GeventActor (class in pykka.gevent), 36
GeventFuture (class in pykka.gevent), 35

I
is_alive() (pykka.ActorRef method), 17

J
join() (pykka.Future method), 23

K
kwargs (pykka.messages.ProxyCall attribute), 27

L
log_thread_tracebacks() (in module

pykka.debug), 28

M
map() (pykka.Future method), 23

55

Pykka Documentation, Release 2.0.3

O
on_failure() (pykka.Actor method), 17
on_receive() (pykka.Actor method), 17
on_start() (pykka.Actor method), 16
on_stop() (pykka.Actor method), 17

P
proxy() (pykka.ActorRef method), 18
ProxyCall (class in pykka.messages), 27
ProxyGetAttr (class in pykka.messages), 27
ProxySetAttr (class in pykka.messages), 27
pykka (module), 15
pykka.debug (module), 28
pykka.eventlet (module), 36
pykka.gevent (module), 35
pykka.messages (module), 26
Python Enhancement Proposals

PEP 386, 15
PEP 396, 15, 46

R
reduce() (pykka.Future method), 24
register() (pykka.ActorRegistry class method), 26

S
set() (pykka.eventlet.EventletFuture method), 37
set() (pykka.Future method), 22
set() (pykka.gevent.GeventFuture method), 35
set() (pykka.ThreadingFuture method), 34
set_exception() (pykka.eventlet.EventletFuture

method), 37
set_exception() (pykka.Future method), 22
set_exception() (pykka.gevent.GeventFuture

method), 35
set_exception() (pykka.ThreadingFuture method),

34
set_get_hook() (pykka.Future method), 23
start() (pykka.Actor class method), 16
stop() (pykka.Actor method), 16
stop() (pykka.ActorRef method), 18
stop_all() (pykka.ActorRegistry class method), 26

T
tell() (pykka.ActorRef method), 17
ThreadingActor (class in pykka), 34
ThreadingFuture (class in pykka), 33
Timeout, 26
traversable() (in module pykka), 21

U
unregister() (pykka.ActorRegistry class method), 26
use_daemon_thread (pykka.ThreadingActor at-

tribute), 34

V
value (pykka.messages.ProxySetAttr attribute), 27

56 Index

	Quickstart
	Rules of the actor model
	The actor implementations
	A basic actor
	Actor proxies

	Examples
	Plain actor
	Actor with proxy
	Multiple cooperating actors
	Pool of actors sharing work
	Mopidy music server

	Pykka API
	Actors
	Proxies
	Futures
	Registry
	Exceptions
	Messages
	Logging
	Debug helpers

	Runtimes
	Threading
	gevent
	eventlet

	Testing
	An example

	Changes
	v2.0.3 (2020-11-27)
	v2.0.2 (2019-12-02)
	v2.0.1 (2019-10-10)
	v2.0.0 (2019-05-07)
	v1.2.1 (2015-07-20)
	v1.2.0 (2013-07-15)
	v1.1.0 (2013-01-19)
	v1.0.1 (2012-12-12)
	v1.0.0 (2012-10-26)
	v0.16 (2012-09-19)
	v0.15 (2012-08-11)
	v0.14 (2012-04-22)
	v0.13 (2011-09-24)
	v0.12.4 (2011-07-30)
	v0.12.3 (2011-06-25)
	v0.12.2 (2011-05-05)
	v0.12.1 (2011-04-25)
	v0.12 (2011-03-30)

	Inspiration
	What Pykka is not

	Authors
	Python Module Index
	Index

